Viết mỗi biểu thức sau dưới dạng bình phương của một tổng, một hiệu hoặc hiệu hai bình phương:
a) 25x2-5xy+1/4y2
b) 9x2 + 12x + 4
c) x2 – 6x + 5 – y2 – 4y
d) (2x – y)2 + 4.(x + y)2 – 4.(2x – y).(x + y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


(3 + x)3 - 3x2(x + 4)+ (x + 2)3 = (1 - x)3 - 8
=> x3 + 9x2 + 27x + 27 - 3x3 - 12x2 + x3 + 6x2 + 12x + 8 = -x3 + 3x2 - 3x - 7
=> x3 + 9x2 + 27x + 27 - 3x3 - 12x2 + x3 + 6x2 + 12x + 8 + x3 - 3x2 + 3x + 7 = 0
=> (x3 - 3x3 + x3 + x3) + (9x2 - 12x2 + 6x2 - 3x2) + (27x + 12x + 3x) + (27 + 8 + 7) = 0
=> 42x + 42 = 0
=> 42x = -42
=> x = -1
( 3 + x )3 - 3x2( x + 4 ) + ( x + 2 )3 = ( 1 - x )3 - 8
<=> x3 + 9x2 + 27x + 27 - 3x3 - 12x2 + x3 + 6x2 + 12x + 8 = -x3 + 3x2 - 3x + 1 - 8
<=> x3 + 9x2 + 27x - 3x3 - 12x2 + x3 + 6x2 + 12x + x3 - 3x2 + 3x = 1 - 8 - 27 - 8
<=> 42x = -42
<=> x = -1



\(M^3+M^2-2M=0\)
\(\Leftrightarrow M\left(M^2+M-2\right)=0\)
\(\Leftrightarrow M\left(M^2-M+2M-2\right)=0\)
\(\Leftrightarrow M\left(M-1\right)\left(M+2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}M=0\\M=1\\M=-2\end{cases}}\)
vậy.........
Ta có
\(M^3+M^2-2M=0\)
\(\Leftrightarrow M\left(M^2+M-2\right)=0\)( I )
Lại có
\(M^2+M-2=M^2-M+2M-2\)
\(=M\left(M-1\right)+2\left(M-1\right)\)
\(=\left(M+2\right)\left(M-1\right)\)( II )
Thay ( II ) vào ( I ) ta được : \(M\left(M+2\right)\left(M-1\right)=0\)
\(\Leftrightarrow M=0;M=-2;M=1\)
Vậy M = 0; M = -2 ; M = 1

Đáp án:
Trong các phát biểu sau, phát biểu nào diễn đạt đúng nội dung của tiên đề Ơ-clit.
a) Nếu qua điểm M nằm ngoài đường thẳng a có hai đường thẳng song song với a thì chúng trùng nhau.
⇒Đúng
b) Cho điểm M ở ngoài đường thẳng a. Đường thẳng đi qua M và song song với đường thẳng a là duy nhất.
⇒Đúng
c) Có duy nhất một đường thẳng song song với một đường thẳng cho trước.
⇒Sai vì có vô sốđường thẳng song song với một đường thẳng cho trước.
d) Qua điểm M nằm ngoài đường thẳng a có ít nhất một đường thẳng song song
⇒Sai vì chỉ có duy nhất 1 đường thẳng song song
a, \(25x^2+5xy+\frac{1}{4}y^2=\left(5x\right)^2+2.5x.\frac{1}{2}y+\left(\frac{1}{2}y\right)^2\)
\(=\left(5x+\frac{1}{2}y\right)^2\)
b, \(9x^2+12x+4=\left(3x\right)^2+2.3x.2+2^2=\left(3x+2\right)^2\)
c, \(x^2-6x+5-y^2-4y=\left(x^2-6x+9\right)-\left(y^2+4y+4\right)\)
\(=\left(x-3\right)^2-\left(y+2\right)^2=\left(x-y-5\right)\left(x+y-1\right)\)
d, \(\left(2x-y\right)^2+4\left(x+y\right)^2-4\left(2x-y\right)\left(x+y\right)\)
\(=\left(2x-y\right)^2-2\left(2x-y\right)\left(2x+2y\right)+\left(2x+2y\right)^2\)
\(=\left(2x-y+2x+2y\right)^2=\left(4x+y\right)^2\)
Có cái cc