K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi độ dài quãng đường AB là x(km)

(Điều kiện: x>0)

Thời gian ô tô thứ nhất đi từ A đến B là \(\dfrac{x}{30}\left(giờ\right)\)

Thời gian ô tô thứ hai đi từ A đến B là \(\dfrac{x}{60}\left(giờ\right)\)

Ô tô thứ hai đến B trước ô tô thứ nhất 3 giờ nên ta có:

\(\dfrac{x}{30}-\dfrac{x}{60}=3\)

=>\(\dfrac{x}{60}=3\)

=>x=180(nhận)

Thời gian ô tô thứ nhất đi là 180/60=3(giờ)

Thời gian ô tô thứ hai đi là 180/30=6(giờ)

1 tháng 5 2024

Nhìn thấy cây trong vườn, tôi cảm nhận được sự yên bình mà chúng mang lại cho không gian xung quanh.

2 tháng 5 2024

  Nhìn những cây trong vườn, khi cành cây mẹ, giang tay che chắn cho những nhánh cây non, trái tim tôi bình yên, ấm áp đến lạ thường. 

1 tháng 5 2024

mik dang gap giup mik vs

2 tháng 5 2024

(2\(x\) - 3).(\(\dfrac{5}{4}\)\(x\) - 6)  = 0

\(\left[{}\begin{matrix}2x-3=0\\\dfrac{5}{4}x-6=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=6:\dfrac{5}{4}\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{24}{5}\end{matrix}\right.\)

Vậy \(x\) \(\in\) {\(\dfrac{3}{2}\)\(\dfrac{24}{5}\)}

 

 

CL
Cô Linh Trang
Manager VIP
17 tháng 6 2024

Thế kỉ XV là giai đoạn có hai triều đại phong kiến cùng tồn tại, thứ nhất là nhà Hồ (1400 - 1407) và sau đó là nhà Lê sơ hay còn gọi là Hậu Lê (1428 - 1527). Để chứng minh nhận định trên, em cần khai thác các nội dung sau: 
- Chính trị, pháp luật. 
- Kinh tế.
- Văn hoá - xã hội. 
- Đặc biệt đây là giai đoạn có 2 cuộc cải cách lớn: cải cách của Hồ Quý Ly và triều Hồ cuối thế kỉ XIV đầu thế kỉ XV và cải cách của Lê Thánh Tông thế kỉ XV. 

2 tháng 5 2024

     Đây là toán nâng cao chuyên đề chuyển động trên dòng nước. Cấu trúc thi chuyên, thi học sinh giỏi các cấp, thi violympic. Hôm nay, Olm.vn sẽ hướng dẫn các em giải chi tiết dạng này như sau.

               Giải:

Cứ 1 giờ ca nô xuôi dòng được:

     1 : 2 = \(\dfrac{1}{2}\) (quãng sông)

Cứ 1 giờ ca nô ngược dòng được:

      1 : 5  = \(\dfrac{1}{5}\) (quãng sông)

Cứ một giờ cụm bèo trôi được: 

       (\(\dfrac{1}{2}\) - \(\dfrac{1}{5}\)) : 2 = \(\dfrac{3}{20}\) (quãng sông)

Thời gian cụm bèo trôi theo dòng nước từ A đến B là:

        1 : \(\dfrac{3}{20}\) = \(\dfrac{20}{3}\) (giờ)

 \(\dfrac{20}{3}\) giờ  = 6 giờ 40 phút

Đáp số: 6 giờ 40 phút. 

 

   

   

 

         

 

 

 

 

1 tháng 5 2024

Bạn tham khảo:  

Vấn đề bao lực học đường trong môn Ngữ văn ở lứa tuổi của học sinh lớp 7 là một vấn đề quan trọng và cần được xem xét một cách cẩn thận. Bao lực học đường đòi hỏi sự đề cao về khả năng đọc, hiểu và phân tích văn bản, cũng như kỹ năng viết và sự sáng tạo.

Một trong những vấn đề chính về bao lực học đường trong môn Ngữ văn ở lớp 7 là làm thế nào để kích thích sự quan tâm và tạo ra môi trường học tập tích cực cho học sinh. Điều này có thể đạt được thông qua việc chọn lựa các tài liệu và tác phẩm phù hợp với sự phát triển tư duy và trí tuệ của học sinh trong độ tuổi này.

Một phần quan trọng của việc giáo dục trong môn Ngữ văn là khuyến khích sự sáng tạo và tự do biểu đạt của học sinh. Điều này có thể thúc đẩy thông qua các hoạt động như viết luận, sáng tác văn bản, và thảo luận về các tác phẩm văn học. Việc tạo ra không gian cho học sinh để thể hiện ý kiến của họ và phát triển kỹ năng viết sẽ giúp họ tự tin hơn khi tiếp cận với nội dung phức tạp hơn.

Hơn nữa, việc tích hợp công nghệ vào quá trình giảng dạy cũng có thể là một cách hiệu quả để tăng cường bao lực học đường trong môn Ngữ văn. Sử dụng các tài nguyên trực tuyến, phần mềm giáo dục, hoặc các ứng dụng di động có thể giúp học sinh tiếp cận với nội dung một cách linh hoạt và thú vị hơn.

Cuối cùng, việc tạo ra một môi trường học tập tích cực và ủng hộ là chìa khóa quan trọng để đảm bảo sự thành công của bao lực học đường trong môn Ngữ văn ở lớp 7. Các giáo viên có thể đóng vai trò quan trọng trong việc tạo ra một không gian học tập an toàn, động viên và khích lệ sự phát triển của từng học sinh.

#hoctot

Gọi chiều dài, chiều rộng, chiều cao lần lượt là a(cm),b(cm),c(cm)

(ĐIều kiện: a>0; b>0; c>0)

Chiều dài; chiều rộng; chiều cao lần lượt tỉ lệ với 4;3;2

=>\(\dfrac{a}{4}=\dfrac{b}{3}=\dfrac{c}{2}=k\)

=>a=4k; b=3k; c=2k

Thể tích là 192cm3 nên \(a\cdot b\cdot c=192\)

=>\(4k\cdot3k\cdot2k=192\)

=>\(24k^3=192\)

=>\(k^3=8\)

=>\(k=2\)

=>\(a=4\cdot2=8;b=3\cdot2=6;c=2\cdot2=4\)

Diện tích xung quanh là:

(8+6)x2x4=8x14=112(cm2)

bài 1:

a: \(\left\{{}\begin{matrix}3x+2y=5\\2x+y=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x+2y=5\\4x+2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x=1\\2x+y=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-1\\y=2-2x=2-2\cdot\left(-1\right)=4\end{matrix}\right.\)

b: Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=5\\x_1x_2=\dfrac{c}{a}=2\end{matrix}\right.\)

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=5^2-2\cdot2=25-4=21\)

1 tháng 5 2024

Khoảng cách giữa xe máy và ô tô sau 6 giờ là 

   45 x 6 = 270 [km]

Hiệu vận tốc là 

60 - 45 = 15 [km/giờ]

Thời đi để ô tô đuổi kịp xe máy là

270 : 15 = 18 [giờ]

          Đáp số : 18 giờ

1 tháng 5 2024

mạng nha bn :))