1) Đố vui: Cho hình vuông ABCD có cạnh a \(\left(a>0\right)\). Một điểm O bất kì không nằm ở miền ngoài hình vuông. Kẻ \(OM\perp AB\)tại M, \(ON\perp BC\)tại N, \(OP\perp CD\)tại P, \(OQ\perp AD\)tại Q. Chứng minh rằng khi điểm O di chuyển nhưng vẫn thỏa mãn điều kiện không nằm ở miền ngoài hình vuông ABCD thì tổng \(OM+ON+OP+OQ\)không đổi. Từ đó hãy giải thích vì sao với mọi vị trí của 1 quân xe trên bàn cờ vua tiêu chuẩn thì số ô nó kiểm soát là không đổi. (với điều kiện bàn cờ không có quân nào khác ngoài nó)
(Gợi ý cho những bạn chưa biết: Xe là quân cờ có khả năng di chuyển thẳng hay ngang với số ô không hạn định miễn không có quân khác cản đường nó)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{a\left(b+c\right)}{b^2+bc+c^2}=\frac{a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2\right)\left(ab+bc+ca\right)}\)
\(\ge\frac{4a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2+ab+bc+ca\right)}=\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}\)
Hoàn toàn tương tự, ta được:
\(\frac{a\left(b+c\right)}{b^2+bc+c^2}+\frac{b\left(c+a\right)}{c^2+ca+a^2}+\frac{c\left(a+b\right)}{a^2+ab+b^2}\)
\(\ge\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\)
Ta viết lại bất đẳng thức trên thành:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Đánh giá trên đúng theo bất đẳng thức Bunhiacopxki dạng phân thức. Vậy bất đẳng thức được chứng minh
Ta có : \(2\sqrt{x}+2\ge2\Rightarrow A\le\frac{6}{2}=3\)
Dấu ''='' xảy ra khi x = 0
Với \(x\ge-1\Rightarrow x+1\ge0\Leftrightarrow-2\sqrt{x+1}\le0\Leftrightarrow A\le6\)
Dấu ''='' xảy ra khi x = -1
\(A=\left|2020-2x\right|+\left|2x-2019\right|+2\ge\left|2020-2x+2x-2019\right|+2=3\)
Dấu ''='' xảy ra khi \(\left(2020-2x\right)\left(2x-2019\right)\ge0\)
Xét (O) có ^BDC = ^BEC = 900 ( góc nt chắng nửa đường tròn )
Xét tam giác ABC có CD là đường cao
BE là đường cao
CD giao BE = H => AH là đường cao thứ 3
=> AH vuông BC
Ta có
\(\widehat{BDC}=90^o\)(góc nội tiếp chắn nửa đường tròn) \(\Rightarrow CD\perp AB\)
\(\widehat{BEC}=90^o\)(góc nội tiếp chắn nửa đường tròn) \(\Rightarrow BE\perp AC\)
=> H là trực tâm của tg ABC => AH là đường cao của tg ABC\(\Rightarrow AH\perp BC\)
đk : x >= 0, x khác 4
\(=\dfrac{x+2\sqrt{x}-\left(x-\sqrt{x}-2\right)-\sqrt{x}-4}{x-4}\)
\(=\dfrac{2\sqrt{x}-2}{x-4}=\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
giải thích the ý hiểu thôi nhé
ta có thể chắc chắn rằng \(O,Q,N\) THẲNG HÀNG VÀ \(O,M,P\)THẲNG HÀNG
VÀ DO \(OM\perp AB;OP\perp CD\),2 ĐOẠN THẲNG \(AB\) VÀ \(DC\) SONG SONG VỚI NHAU NÊN \(MP\) LÚC NÀY SẼ LÀ KHOẢNG CÁCH CỦA 2 ĐOẠN THẲNG \(AB\) VÀ \(DC\) ,MP KO ĐỔI(DO CẠNH HÌNH VUÔNG ABCD KO ĐỔI),VÌ THẾ NẾU O NẰM TRONG HÌNH VUÔNG ABCD THÌ OP+OM=MP SẼ KO ĐỔI,CÒN NẾU O NẰM NGOÀI THÌ LÚC NÀY O SẼ KO CÒN NẰM TRÊN ĐOẠN THẲNG MP nên lúc này \(OM+OP\ne MP\),NHƯ VẬY TA ĐÃ CM ĐC NẾU O NẰM TRONG HÌNH VUÔNG ABCD THÌ OM+OP KO ĐỔI(1)
CM TƯƠNG TỰ THÌ TA CÓ OQ+ON KO ĐỔI(2)(KHI MÀ O NẰM TRONG HÌNH VUÔNG ABCD)
TỪ 1 VÀ 2 \(\Rightarrow\) KHI O nằm TRONG HÌNH VUÔNG ABCD THÌ \(OM+ON+OP+OQ\) KO ĐỔI(ĐPCM)
COI QUÂN XE LÀ ĐIỂM O THÌ DO QUÂN XE CHỈ ĐI NGANG DỌC NÊN NÓ CŨNG ĐỊNH RA TRÊN BÀN CỜ NHỮNG ĐOẠN THẲNG VUÔNG GÓC NHÉ,CM TƯƠNG TỰ TRÊN LÀ ĐC
Có thể giải thích như thế này:
Ta có \(S_{OAB}=\frac{1}{2}OM.AB=\frac{1}{2}a.OM\), \(S_{OBC}=\frac{1}{2}ON.BC=\frac{1}{2}a.ON\), \(S_{OCD}=\frac{1}{2}OP.CD=\frac{1}{2}a.OP\), \(S_{ODA}=\frac{1}{2}OQ.AD=\frac{1}{2}a.OQ\)
Từ đó ta có: \(S_{ABCD}=S_{OAB}+S_{OBC}+S_{OCD}+S_{OAD}=\frac{1}{2}a\left(OM+ON+OP+OQ\right)\)
Vì hình vuông ABCD cố định nên \(S_{ABCD}\)không đổi và \(a\)không đổi, từ đó dẫn đến \(OM+ON+OP+OQ\)không đổi.
(*) Cũng coi quân xe là điểm O và giải thích tương tự.