K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2017

\(\sqrt{x+y+3}=\sqrt{x}+\sqrt{y}-1\)

\(\left(\sqrt{x+y+3}\right)^2=\left(\sqrt{x}+\sqrt{y}-1\right)^2\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y}-\sqrt{xy}+1=0\)

\(\Leftrightarrow\left(1-\sqrt{x}\right)\left(\sqrt{y}-1\right)=-2\)

Xong

22 tháng 12 2023

Sai nha! Đề cho x, y nguyên chứ không cho căn(x), căn(y) nguyên.

26 tháng 10 2017

(b+c)^2 <= 2(b^2+c^2) (C-S)

=> A >= a^2/(a^2+2b^2+2c^2) +....+....

=a^4/(a^4+2a^2b^2+2a^2c^2)+....+....

>= (a^2+b^2+c^2)^2/(a^4+b^4+c^4+4a^2b^2+4b^2c^2+4c^2a^2) (Engel)

=(a^2+b^2+c^2)^2/(a^2+b^2+c^2)^2+2(a^2b^2+b^2c^2+c^2a^2)

Ta Cm A >= 3/5 

điều này tương đương 5(a^2+b^2+c^2)^2 >= 3(a^2+b^2+c^2)^2+6(a^2b^2+b^2c^2+c^2a^2)

<=>......<=>a^4+b^4+c^4 >= a^2b^2+b^2c^2+c^2a^2 (đúng theo AM-GM)

26 tháng 10 2017

\(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)

Áp dụng BĐT Cô-si, ta có:

\(\frac{bc}{a}+\frac{ab}{c}\ge2.\sqrt{\frac{bc}{a}.\frac{ab}{c}}=2b\) 1

C/m tương tự:

\(\frac{ca}{b}+\frac{ab}{c}\ge2c\) 2

\(\frac{ab}{c}+\frac{ca}{b}\ge2a\) 3

1 + 2 + 3 -> \(2.\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge2.a+b+c\)

\(\rightarrow\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)

26 tháng 10 2017

Bài này kiểu j đây

Giải hộ cái xem nào

27 tháng 10 2017

cái này bọn mik làm rồi này, cậu chia cả tử và mẫu cho a^2 ;b^2(lần lượt nhé và chỉ 2 phân thức đầu thôi)

sau đó 

rồi cậu rút gọn mẫu và đặt b/a=x;c/b=y=> c/a=xy

rồi ... cô si các kiểu

bài này chi đề xuất để biết thêm chi tiết liên hệ với đào khánh chi thông minh hok giỏi nhất đội tuyển toán trường THCS 14-10

2 tháng 7 2020

Dự đoán \(MinP=\frac{3}{4}\)khi a = b = c

Ta có: \(\frac{c}{4a}=\frac{c^2}{4ca}\ge\frac{c^2}{\left(c+a\right)^2}\)(Theo BĐT AM - GM)

Nên ta cần chứng minh \(\frac{a^2}{\left(a+b\right)^2}+\frac{b^2}{\left(b+c\right)^2}+\frac{c^2}{\left(c+a\right)^2}\ge\frac{3}{4}\)

Ta có bất đẳng thức quen thuộc sau: \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)(BĐT Bunyakovsky dạng phân thức)

Áp dụng, ta được: \(\frac{a^2}{\left(a+b\right)^2}+\frac{b^2}{\left(b+c\right)^2}+\frac{c^2}{\left(c+a\right)^2}\ge\frac{1}{3}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)^2\)

Đến đây, ta cần chỉ ra rằng: \(\frac{1}{3}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)^2\ge\frac{3}{4}\)

\(\Leftrightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\ge\frac{3}{2}\)

Ta viết bất đẳng thức cần chứng minh thành \(\frac{1}{\left(1+\frac{b}{a}\right)^2}+\frac{1}{\left(1+\frac{c}{b}\right)^2}+\frac{1}{\left(1+\frac{a}{c}\right)^2}\ge\frac{3}{4}\)

Đặt \(x=\frac{b}{a};y=\frac{c}{b};z=\frac{a}{c}\)khi đó xyz = 1 và ta cần chứng minh \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}+\frac{1}{\left(1+z\right)^2}\ge\frac{3}{4}\)

Lại đặt \(x=\frac{np}{m^2};y=\frac{mp}{n^2};z=\frac{mn}{p^2}\)(m, n, p > 0). Khi đó bất đẳng thức được viết lại thành:

\(\frac{1}{\left(1+\frac{np}{m^2}\right)^2}+\frac{1}{\left(1+\frac{mp}{n^2}\right)^2}+\frac{1}{\left(1+\frac{mn}{p^2}\right)^2}\ge\frac{3}{4}\)\(\Leftrightarrow\frac{m^4}{\left(m^2+np\right)^2}+\frac{n^4}{\left(n^2+mp\right)^2}+\frac{p^4}{\left(p^2+mn\right)^2}\ge\frac{3}{4}\)

Áp dụng bất đẳng thức Bunyakovsky dạng phân thức thì được: \(\frac{m^4}{\left(m^2+np\right)^2}+\frac{n^4}{\left(n^2+mp\right)^2}+\frac{p^4}{\left(p^2+mn\right)^2}\)\(\ge\frac{\left(m^2+n^2+p^2\right)^2}{\left(m^2+np\right)^2+\left(n^2+mp\right)^2+\left(p^2+mn\right)^2}\)

Và ta cần chứng minh \(\frac{\left(m^2+n^2+p^2\right)^2}{\left(m^2+np\right)^2+\left(n^2+mp\right)^2+\left(p^2+mn\right)^2}\ge\frac{3}{4}\)

\(\Leftrightarrow m^4+n^4+p^4+5\left(m^2n^2+n^2p^2+p^2m^2\right)\ge6mnp\left(m+n+p\right)\)

Ta có: \(m^4+n^4+p^4+5\left(m^2n^2+n^2p^2+p^2m^2\right)\ge\)\(\left(m^2n^2+n^2p^2+p^2m^2\right)+5\left(m^2n^2+n^2p^2+p^2m^2\right)\)\(=6\left(m^2n^2+n^2p^2+p^2m^2\right)\)\(\ge6mnp\left(m+n+p\right)\)

Vậy bất đẳng thức được chứng minh.

Đẳng thức xảy ra khi a = b = c 

25 tháng 10 2017

Ta chứng minh bất đẳng thức phụ

\(\frac{1}{8x^2+1}\ge\frac{2}{x+1}-1\)

\(\Leftrightarrow4x^3-4x^2+x\ge0\)

\(\Leftrightarrow x\left(2x-1\right)^2\ge0\)(đúng)

Áp dụng vào bài toán ta được

\(\frac{1}{8a^2+1}+\frac{1}{8b^2+1}+\frac{1}{8c^2+1}\ge-1+\frac{2}{a+1}-1+\frac{2}{b+1}-1+\frac{2}{c+1}\)

\(=-3+2\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)=-3+4=1\)

3 tháng 6 2020

Ta có: \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\)

\(\Rightarrow3-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)=1\)

\(\Rightarrow\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}=1\)

Xét BĐT  \(\Sigma_{cyc}\frac{1}{8a^2+1}\ge1\Leftrightarrow3-\Sigma_{cyc}\frac{1}{8a^2+1}\le2\)

\(\Leftrightarrow\Sigma_{cyc}\frac{8a^2}{8a^2+1}\le2\Leftrightarrow\Sigma_{cyc}\frac{4a^2}{8a^2+1}\le2\)

Xét BĐT phụ: \(\frac{4x^2}{8x^2+1}\le\frac{x}{x+1}\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{x\left(2x-1\right)^2}{\left(x+1\right)\left(8x^2+1\right)}\)(đúng với mọi x thực dương)

Áp dụng, ta có: \(\Sigma_{cyc}\frac{4a^2}{8a^2+1}\le\text{​​}\Sigma_{cyc}\frac{a}{a+1}=1\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

23 tháng 10 2017

\(\Leftrightarrow\frac{x+3}{\sqrt{4x+1}+\sqrt{3x-2}}=\frac{x+3}{5}\)

\(\Leftrightarrow\sqrt{4x+1}+\sqrt{3x-2}=5\)

đến đây dễ rùi

23 tháng 10 2017

gọi s là quãng đường AB 
nếu chạy với vận tốc 35km/h thì thời gian đi từ A đến B là s/35 và xe sẽ đến B lúc 14 giờ 
nếu chạy với vận tốc 50km/h thì thời gian đi từ A đến B là s/50 và xe sẽ đến B lúc 11 giờ 
=> s/35- s/50= 14 - 11 = 3 (giờ) 
=> 10s/350 - 7s/350 = 3 
=> s= 350 (km) 

vậy quãng đường là 350 km 
thời gian đi từ A đến B nếu xe đi với vận tốc 50km là 350/50= 7 giờ 
vậy thời điểm xuất phát là 11-7=4 giờ

23 tháng 10 2017

36km nhé em

23 tháng 10 2017

\(\left[\frac{2}{3\sqrt{x}}-\frac{2}{\sqrt{x}+1}.\left(\frac{\sqrt{x}+1}{3\sqrt{x}}-\sqrt{x}-1\right)\right]:\frac{\sqrt{x}-1}{\sqrt{x}}\)

\(=\left[\frac{2}{3\sqrt{x}}-\frac{2}{\sqrt{x}+1}.\left(\frac{\sqrt{x}+1-3x-3\sqrt{x}}{3\sqrt{x}}\right)\right].\frac{\sqrt{x}}{\sqrt{x}-1}\)

\(=\left[\frac{2}{3\sqrt{x}}-\frac{2}{\sqrt{x}+1}.\frac{-3x-2\sqrt{x}+1}{3\sqrt{x}}\right].\frac{\sqrt{x}}{\sqrt{x}-1}\)

\(=\left[\frac{2}{3\sqrt{x}}-\frac{2}{\sqrt{x}+1}.\frac{\left(\sqrt{x}+1\right)\left(-3\sqrt{x}+1\right)}{3\sqrt{x}}\right].\frac{\sqrt{x}}{\sqrt{x}-1}\)

\(=\left[\frac{2}{3\sqrt{x}}-\frac{-6\sqrt{x}+2}{3\sqrt{x}}\right].\frac{\sqrt{x}}{\sqrt{x}-1}\)

\(=\frac{2\sqrt{x}}{\sqrt{x}-1}\)