cho a=3+3^2+3^3+.......+3^199+3^200 chứng tỏ 2A+3 là một lũy thừa của 3
giúp em câu này cảm ơn các thầy và cô ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
b: ta có; ΔBAD=ΔBED
=>BA=BE
Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
BE=BA
\(\widehat{EBF}\) chung
Do đó: ΔBEF=ΔBAC
=>BF=BC
c: Xét ΔBFC có \(\dfrac{BA}{BF}=\dfrac{BE}{BC}\)
nên AE//FC
\(\left[sin^3a+sina\cdot sin^2\left(90-a\right)\right]:\left[sina-4\cdot cos\left(90-a\right)\right]\)
\(=\left[sin^3a+sina\cdot cos^2a\right]:\left[sina-4\cdot sina\right]\)
\(=\dfrac{sina\left(sin^2a+cos^2a\right)}{-3\cdot sina}=\dfrac{1}{-3}=-\dfrac{1}{3}\)
\(A=\dfrac{\sqrt{4+\sqrt{15}}-\sqrt{2-\sqrt{3}}+\sqrt{10}}{\sqrt{69+9\sqrt{5}}}\)
\(=\dfrac{\sqrt{8+2\sqrt{15}}-\sqrt{4-2\sqrt{3}}+2\sqrt{5}}{\sqrt{138+18\sqrt{5}}}\)
\(=\dfrac{\sqrt{5}+\sqrt{3}-\sqrt{3}+1+2\sqrt{5}}{\sqrt{135+2\cdot3\sqrt{15}\cdot\sqrt{3}+3}}\)
\(=\dfrac{3\sqrt{5}+1}{\sqrt{\left(3\sqrt{15}+\sqrt{3}\right)^2}}=\dfrac{3\sqrt{5}+1}{3\sqrt{15}+\sqrt{3}}\)
\(=\dfrac{1}{\sqrt{3}}\)
32% của 160 m2 là
\(160\div100\times32=51,2\)( m2 )
Đáp số 51,2 m2
32 % của 160 m2 là :
160 : 100 x 32 = 51 , 2 ( m2 )
Đ/S : .......
\(a.\dfrac{31}{17}+\left(-\dfrac{5}{13}\right)+\left(-\dfrac{8}{13}\right)-\dfrac{4}{17}\\ =\left(\dfrac{31}{17}-\dfrac{4}{17}\right)+\left(\dfrac{-5}{13}+\dfrac{-8}{13}\right)\\ =\dfrac{27}{17}+\left(-1\right)\\ =\dfrac{27}{17}+\dfrac{-17}{17}=\dfrac{10}{17}\\ b.\left(-2\right)^3-1=-8-1=-9\\ \dfrac{5}{27}\cdot\left(\dfrac{-3}{2}\right)^3=\dfrac{5}{27}\cdot\dfrac{-27}{8}=-\dfrac{5}{8}\)
pt đã cho \(\Leftrightarrow x^2-\left(y+1\right)x-2y^2+5y-6=0\) (*)
Ta tính được \(\Delta=9y^2-18y+25>0\) với mọi y.
Để (*) có nghiệm nguyên thì \(9y^2-18y+25\) là số chính phương
\(\Leftrightarrow9y^2-18y+25=z^2\left(z\inℕ,z\ge4\right)\)
\(\Leftrightarrow\left(3y-3\right)^2+16=z^2\)
\(\Leftrightarrow\left(z+3y-3\right)\left(z-3y+3\right)=16\)
Ta có bảng sau:
\(z+3y-3\) | 1 | -1 | 16 | -16 | 2 | 8 | -2 | -8 | 4 | -4 |
\(z-3y+3\) | 16 | -16 | 1 | -1 | -8 | -2 | 8 | 2 | 4 | -4 |
\(z\) | \(\dfrac{17}{2}\)(l) | -8 | 8 | \(-\dfrac{11}{2}\)(l) | -3 | 3 | 3 | -3 | 4 | -4 |
\(y\) | \(\dfrac{10}{3}\)(l) | \(\dfrac{10}{3}\)(l) | \(\dfrac{8}{3}\)(l) | \(\dfrac{8}{3}\)(l) | \(-\dfrac{2}{3}\) | \(-\dfrac{2}{3}\)(l) | 1 | 1 | ||
Vậy \(y=1\) \(\Rightarrow x^2-2x-3=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
Vậy pt đã cho có các nghiệm nguyên là \(\left(-1;1\right)\) và \(\left(3;1\right)\)
Diện tích xung quanh hộp:
\(4\times30\times7=840\left(cm^2\right)\)
Diện tích bìa để làm 1 chiếc hộp:
\(840+2\times30\times30=2640\left(cm^2\right)=0,264\left(m^2\right)\)
Số mét vuông bìa để đủ làm 30000 chiếc hộp:
\(0,264\times30000=7920\left(m^2\right)\)
Diện tích bìa cứng cần dùng để làm chiếc hộp là:
\(\left(30+30\right)\times2\times7+2\times30\times30=2640\left(cm^2\right)\) `(cm^2)`
Diện tích bìa cứng cần dùng để làm 30 000 chiếc hộp là:
\(2640\times30000=79200000\left(cm^2\right)\)
Đổi: \(79200000cm^2=7920m^2\)
ĐS: ...
\(A=3+3^2+3^3+...+3^{199}+3^{200}\\ \Rightarrow3A=3^2+3^3+3^4+....+3^{200}+3^{201}\\ \Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{200}+3^{201}\right)-\left(3+3^2+3^3+...+3^{199}+3^{200}\right)\\ \Rightarrow2A=3^{201}-3\\ \Rightarrow2A+3=3^{201}\)( Là một lũy thừa của 3 ) => DPCM
cảm ơn