K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2017

cục than

17 tháng 11 2017

úi nhầm câu cho xin lỗi

16 tháng 11 2017

ta có:2(y+z)=x(yz-1)

=>2y+2z=xyz-x

=>2y+2z+x=xyz

mik ko làm tiếp đc do thiếu đ/k

16 tháng 11 2017

\(\sqrt{\left(1+x^2\right)^3}-4x^3=1-3x^4\)

\(\Leftrightarrow\left(\sqrt{\left(1+x^2\right)^3}-1\right)-4x^3+3x^4=0\)

\(\Leftrightarrow\frac{\left(1+x^2\right)^3-1}{\sqrt{\left(1+x^2\right)^3}+1}-4x^3+3x^4=0\)

\(\Leftrightarrow\frac{x^2\left[\left(1+x^2\right)^2+\left(1+x^2\right)+1\right]}{\sqrt{\left(1+x^2\right)^3}+1}-4x^3+3x^4=0\)

\(\Leftrightarrow x^2\left(\frac{\left(1+x^2\right)^2+\left(1+x^2\right)+1}{\sqrt{\left(1+x^2\right)^3}+1}-4x+3x^2\right)=0\)

Ta có:  \(\frac{\left(1+x^2\right)^2+\left(1+x^2\right)+1}{\sqrt{\left(1+x^2\right)^3}+1}-4x+3x^2\ge3x^2-4x+\frac{3}{2}>0\)

\(\Rightarrow x=0\)

16 tháng 11 2017

TH 1: \(x^2+y^2< 1\)

\(\Rightarrow\hept{\begin{cases}|x|< 1\\|y|< 1\end{cases}}\)

\(\Rightarrow S=x+2y\le\sqrt{2\left(x^2+y^2\right)}+y< 1+\sqrt{2}\left(1\right)\)

TH 2: \(x^2+y^2>1\)

\(\Rightarrow x^2-x+y^2-y\le0\)

\(\Leftrightarrow\left(S-2y\right)^2-\left(S-2y\right)+y^2-y\le0\)

\(\Leftrightarrow5y^2+\left(1-4S\right)y+S^2-S\le0\)

\(\Rightarrow\Delta=\left(1-4S\right)^2-4.5.\left(S^2-S\right)\ge0\)

\(\Leftrightarrow S\le\frac{5+\sqrt{10}}{2}\left(2\right)\)

Từ (1) và (2) suy ra được GTLN của S

PS: S là đặt cho nó gọn nhé

15 tháng 11 2017

121 la 11

144 la 12

169 la 13

225 la 15

15 tháng 11 2017

√121 = 11.

    Hai căn bậc hai của 121 là 11 và -11.
√144 = 12.

    Hai căn bậc hai của 144 là 12 và -12.
√169 = 13.

     Hai căn bậc hai của 169 là 13 và -13.
√225 = 15.

    Hai căn bậc hai của 225 là 15 và -15.

14 tháng 11 2017

ta có \(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\frac{ab+2c^2}{\sqrt{1+ab-c^2}.\sqrt{ab+2c^2}}=\frac{ab+2c^2}{\sqrt{1+ab-c^2}\sqrt{ab+2c^2}}\)

Áp dụng bất đẳng thức cô si ta có 

\(\sqrt{ab+1-c^2}\sqrt{ab+2c^2}\le\frac{1}{2}\left(ab+1-c^2+ab+2c^2\right)=\frac{1}{2}\left(2ab+1+c^2\right)\) 

=\(\frac{1}{2}\left(2ab+a^2+b^2+2c^2\right)=\frac{1}{2}\left[\left(a+b\right)^2+2c^2\right]\le\frac{1}{2}\left(2a^2+2b^2+2c^2\right)=\left(a^2+b^2+c^2\right)\) =1

=> \(\frac{ab+2c^2}{...}\ge\frac{ab+2c^2}{1}=2c^2+ab\)

tương tự + vào thì e sẽ ra điều phải chứng minh

22 tháng 4 2020

Nhà hàng Tôm hùm kính chào quý khách ĐC : 255 Nguyễn Huệ, Q tân bình , TP HCM

15 tháng 11 2017

Căn phòng hình vuông có kích thước là 21 lần cạnh viên gạch.

Các viên gạch men trắng nằm trên 2 đường chéo nên số viên là: 21 + 21 - 1 = 41 (viên)

(Chú ý trừ đii 1 do cạnh hình vuông lẻ nên hai đường chéo có chung 1 ô).

Số viên gạch men xanh là số ô còn lại và bằng:

    441 - 41 = 400 (viến)

ĐS: 400 viên xanh

15 tháng 11 2017

Gọi cạnh hình vuông chứa số viên gạch là x
mà diện tích hình vuông x^2 =441 viên
=>x = 21
vậy cạnh hình vuông chứa 21viên gach.;
vì& loại men trắng nằm trên hai đường chéo của nền nhà.
=>mỗi hàng chứa 2 viên gạch .

Riêng hàng số 11, ô số 11
chỉ chứa 1 viên (vì giao điểm của hai đường chéo)
Nên số viên gạch trắng là:

      2 x 20 +1 =41 (viên)
số viên gạch xanh là :

      441- 41 =400 (viên gạch)

          Đáp số : 400 viên gạch men xanh.