K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2022

Trả lời:

a, \(P=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\left(ĐK:x>0;x\ne1\right)\)

\(=\left(\frac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}+2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\left(x+\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\left(x+2\sqrt{x}-\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\left[\sqrt{x}\left(\sqrt{x}+2\right)-\left(\sqrt{x}+2\right)\right]\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\) (đpcm)

b, \(2P=2\sqrt{x}+5\Leftrightarrow\frac{2\left(\sqrt{x}+1\right)}{\sqrt{x}}=2\sqrt{x}+5\) \(\left(ĐK:x>0\right)\)

\(\Leftrightarrow\frac{2\sqrt{x}+2}{\sqrt{x}}=2\sqrt{x}+5\)

\(\Leftrightarrow\frac{2\sqrt{x}+2}{\sqrt{x}}=\frac{2x}{\sqrt{x}}+\frac{5\sqrt{x}}{\sqrt{x}}\)

\(\Rightarrow2\sqrt{x}+2=2x+5\sqrt{x}\)

\(\Leftrightarrow2x+3\sqrt{x}-2=0\)

\(\Leftrightarrow2x+4\sqrt{x}-\sqrt{x}-2=0\)

\(\Leftrightarrow2\sqrt{x}\left(\sqrt{x}+2\right)-\left(\sqrt{x}+2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}+2\right)\left(2\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+2=0\\2\sqrt{x}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-2\left(voli\right)\\2\sqrt{x}=1\end{cases}\Leftrightarrow}\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\left(tm\right)}\)

Vậy x = 1/4 là giá trị cần tìm.

27 tháng 2 2022

Trên cạnh AE nhé các bạn. Đề lộn.

27 tháng 2 2022
Đẹt Đc gỷd
27 tháng 2 2022

Làm như vậy không ổn lắm bởi vì còn phải xét trường hợp \(x=0\)và \(x< 0\)nữa, rất mất thời gian. Bạn cứ làm theo cách thông thường đưa về phương trình tích là được rồi.

27 tháng 2 2022

a) ĐKXĐ : \(x\ge5\)

Đặt \(\sqrt{x-5}=a;\sqrt[3]{3-x}=b\)(a \(\ge0\))

Khi đó phương trình thành a + b = 2

Lại có \(b^3+a^2=-2\)

=> HPT : \(\hept{\begin{cases}a+b=2\\b^3+a^2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b^3+\left(2-b\right)^2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b^3+b^2-4b+6=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=2-b\\\left(b+3\right)\left(b^2-2b+2\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=5\\b=-3\end{cases}}\)(tm)

a = 5 => x = 30 (tm) 

Vậy x = 30 là nghiệm phương trình 

27 tháng 2 2022

d) Ta có \(\sqrt{25x^2-20x+4}+\sqrt{25x^2-40x+16}=0\)

<=> \(\sqrt{\left(5x-2\right)^2}+\sqrt{\left(5x-4\right)^2}=2\)

<=> |5x - 2| + |5x - 4| = 2

Lại có |5x - 2| + |5x - 4| = |5x - 2| + |4 - 5x| \(\ge\left|5x-2+4-5x\right|=2\)

Dấu "=" xảy ra <=> \(\left(5x-2\right)\left(4-5x\right)\ge0\Leftrightarrow\frac{2}{5}\le x\le\frac{4}{5}\)

Vậy \(\frac{2}{5}\le x\le\frac{4}{5}\)là nghiệm phương trình 

26 tháng 2 2022

đvdt: đơn vị diện tích

k cho mình nhé:))

26 tháng 2 2022

Ta có: \(\overline{ab}\) là số nguyên tố vì thế, b lẻ, do đó: a2+3 phải là số chẵn. Hay a là số lẻ. Ta xét các trường hợp: Nếu: a=1 suy ra: 10+b=b2+4 hay (b-3)(b+2)=0; ta tìm được b=3. Nếu: a=3 suy ra: 30+b=b2+12 hay b2-b-18=0. Phương trình không có nghiệm nguyên dương. Nếu: a=5 suy ra: 50+b=b2+28 tương tự...  Nếu a=7; a=9... Tìm được số nhà của Bình là 13.

26 tháng 2 2022

nhà cậu ở đâu nhà tớ ở Lai Châu ?

26 tháng 2 2022

tra google ý

26 tháng 2 2022

cái này mik k bt kb nha

1 tháng 3 2022

a, Vì ^AOC và ^COB kề bù nên 

^AOD + ^DOC + ^COE + ^EOB = 1800 (1)

Vì DA = DC (tc tiếp tuyến cắt nhau)

OA = OC = R 

Vậy OD là trung trực => ^DOA = ^DOC 

 tương tự với OE là trung trực => ^EOB = ^EOC 

(1) => 2^DOC + 2^COE = 1800 <=> 2(^DOC + ^COE) = 1800 => ^DOC + ^COE = 900

hay OD vuông OE tại O hay tam goác DOE vuông tại O

b, Ta có \(AD.BE=EC.CD\)

Xét tam giác DOE vuông tại O, đường cao OC 

Ta có \(OC^2=EC.CD\)( hệ thức lượng ) 

\(\Rightarrow OC^2=EC.CD=AD.BE\Rightarrow R^2=EC.CD=AD.BE\)(luôn đúng)

Vậy tích AD ; BE ko đổi khi C đi chuyển