\(\left(\dfrac{-1}{4}\right)^4=\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(25^6\cdot8^4\)
\(=\left(5^2\right)^6\cdot\left(2^3\right)^4\)
\(=5^{2\cdot6}\cdot2^{3\cdot4}\)
\(=5^{12}\cdot2^{12}\)
\(=\left(5\cdot2\right)^{12}\)
\(=10^{12}\)
\(25^6.8^4\)
\(=\left(5^2\right)^6.\left(2^3\right)^4\)
\(=5^{2.6}.2^{3.4}\)
\(=5^{12}.2^{12}\)
\(=\left(5.2\right)^{12}\)
\(=10^{12}\)
Để biểu thức đã cho đạt giá trị lớn nhất thì (x² - 9)⁴ và -|2x + 6| - (x² - 9)⁴ đạt giá trị lớn nhất
Mà (x² - 9)⁴ ≥ 0 với mọi x ∈ R
⇒ (x² - 9)⁴ = 0 là giá trị nhỏ nhất
⇒ x² - 9 = 0
⇒ x² = 9
⇒ x = 3 hoặc x = -3
*) x = 3
⇒ -|2x + 6| = -12
*) x = -3
⇒ -|2x + 6| = 0
Vậy giá trị lớn nhất của biểu thức đã cho là 2023 khi x = -3
Vì \(\left|x+2\right|+\left|x+\dfrac{3}{5}\right|+\left|x+\dfrac{1}{2}\right|>0\) nên \(4x>0\) hay \(x>0\)
\(\Rightarrow x+2+x+\dfrac{3}{5}+x+\dfrac{1}{2}=4x\)
\(3x+2+\dfrac{3}{5}+\dfrac{1}{2}=4x\)
\(3x+\dfrac{31}{10}=4x\)
\(\Rightarrow4x-3x=\dfrac{31}{10}\)
\(\Rightarrow x=\dfrac{31}{10}\)
Lời giải:
Vì $|x+2|+|x+\frac{3}{5}|+|x+\frac{1}{2}|\geq 0$ với mọi $x$
$\Rightarrow 4x\geq 0\Rightarrow x\geq 0$.
Khi đó:
$x+2>0; x+\frac{3}{5}>0; x+\frac{1}{2}>0$
$\Rightarrow |x+2|+|x+\frac{3}{5}|+|x+\frac{1}{2}|=4x$
$\Rightarrow x+2+x+\frac{3}{5}+x+\frac{1}{2}=4x$
$\Rightarrow 3x+\frac{31}{10}=4x$
$\Rightarrow x=\frac{31}{10}$ (tm)
Lời giải:
$G=\frac{2x^2+15}{x^2+3}=\frac{2(x^2+3)+9}{x^2+3}=2+\frac{9}{x^2+3}$
Vì $x^2\geq 0$ với mọi $x\in\mathbb{R}$
$\Rightarrow x^2+3\geq 3$
$\Rightarrow \frac{9}{x^2+3}\leq 3$
$\Rightarrow G=2+\frac{9}{x^2+3}\leq 2+3=5$.
Vậy $G_{\max}=5$. Giá trị này đạt được khi $x=0$
Biểu thức này không có giá trị min bạn nhé.
\(\left(\dfrac{-1}{4}\right)^4=\dfrac{\left(-1\right)^4}{4^4}=\dfrac{1}{256}\)