Trường của bạn An cách nhà bạn ấy 15 phút đạp xe đạp nên bạn ấy thường bắt đầu đạp xe đi học vào lúc 6 giờ 20 phút sáng. Hôm ấy, An dậy trễ. Vì vậy, An nhờ bố chở đến trường bằng xe máy và hai bố con bắt đầu đi lúc 6 giờ 45 phút. Vận tốc xe máy nhanh hơn vận tốc đạp xe của An là 24km/h. Khi An đến trường, đồng hồ chỉ 6 giờ 51 phút nên bạn vẫn kịp giờ học tiết đầu tiên. Hỏi vận tốc đạp xe đạp của An là bao nhiêu và nhà An cách trường bao nhiêu km?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H E D K
a) Xét tam giác AEB và tam giác HDB có:
\(\widehat{HDB}=\widehat{AEB}=90^o\)
\(\widehat{B}\)chung
=> \(\Delta EBA~\Delta DBH\)
b) Chứng minh tương tự như trên với hai tam giác AEC và HKC ta suy ra:
\(\frac{CA}{HC}=\frac{AE}{HK}\Rightarrow CA.HK=AE.HC\)(1)
c) Ta có: \(\Delta EBA~\Delta DBH\Rightarrow\frac{AE}{DH}=\frac{AB}{BH}\Rightarrow AB.DH=AE.BH\)(2)
Mà HC=HB (3)
Từ (1) (2), (3)=> CA.HK=AB.DH => CA/BA=DH/KH
tòa nhà bóng thanh sắt bóng 57,625 1,6 0,2 A B C N M P mặt trời
Mặt trời chiếu các tia song song dẫn đến
AC//MP (1)
mặt khác tòa nhà và thanh sắt cùng vuông góc với mặt đất nên song song với nhau
=> AB//MN (2)
Từ (1) , (2)
=> \(\widehat{BAC}=\widehat{NMP}\)
=> Hai tam giác vuông BAC và NMP đồng dạng
=> \(\frac{BA}{MN}=\frac{BC}{NP}\)=> \(AB=\frac{MN.BC}{NP}=57,625.\frac{1,6}{0,2}=461\)
Vậy chiều cao tòa nhà là 461m
Đổi 18 phút =0,3 giờ
Gọi Quãng đường từ thành phố Hồ Chí Minh đến Biên Hòa là x ( km, x>0)
Thời gian lúc đi là: \(\frac{x}{50}\left(h\right)\)
Quãng đường lúc về dài hơn lúc đi là 2 km
=> Quãng đường lúc về là x+2 (km)
Thời gian lúc về là:
\(\frac{x+2}{40}\)(h)
Thời gian về nhiều hơn thời gian đi là 18 phút nên ta có phương trình:
\(\frac{x+2}{40}=0,3+\frac{x}{50}\Leftrightarrow5\left(x+2\right)=60+4.x\Leftrightarrow5x+10=60+4x\Leftrightarrow x=50\)
Vậy Quãng đường từ thành phố HCM đến Biên Hòa dài 50km
Cách 1. Đổi 12phút =1/5 giờ. \(\frac{ }{ }\)
Gọi x(giờ) là thời gian đi từ nhà tới trường. Đk: x>0
Quãng đường đi từ nhà tới trường theo dự định là 15x (km).
Thời gian đi từ nhà tới chỗ nghỉ là x/2 giờ.
Quãng đường đi từ nhà tới chỗ nghỉ là 15x/2 km
Thời gian đi từ chỗ nghỉ tới trường là x/2-1/5 giờ.
Quãng đường từ chỗ nghỉ tới trường là 30(x/2-1/5) km
Theo đề bài ta có
15x = 15x/2 + 30(x/2-1/5)
15x = 15x/2 + 30[ (5x - 2)/10]
15x = 15x/2 + 3(5x-2)
30x = 15x + 6(5x-2)
30x = 15x +30x -12
15x=12
X=4/5 (nhận)
Vậy thời gian đi từ nhà tới trường là 4/5 giờ =0,48 giờ
Bạn an đến trường lúc 6giờ +0,48 giờ = 6giờ48phút
Cách 2
Đổi 12phút=1/5 giờ
Gọi x(km) là quãng đường từ nhà tới chỗ nghỉ = quãng đường từ chỗ nghỉ đến trường
Dk: x>0
Quãng đường từ nhà tới trường là 2x km
Thời gian đi từ nhà tới trường đúng quy định là 2x/5 giờ
Thời gian đi từ chỗ nghỉ tới trường là x/30 giờ
Thời gian đi từ nhà tới chỗ nghỉ là x/15 giờ
Theo đề bài ta có pt
X/30+ x/15 + 1/5= 2x/15
X +2x + 6 = 4x
4x-2x-x =6
x=6 nhận
Vậy quãng đường từ nhà tới chỗ nghỉ là 6km
T từ nhà tới chỗ nghỉ là 6/15=2/5 giờ
T từ chỗ nghỉ tới trường là 6/30=1/5 giờ
T đi từ nhà tới trường là 2/5+1/5+1/5=4/5 giờ=48phút
Vậy ăn đến trường lúc 6giờ+0,48= 6 giờ 48phút.
Nhận xét:
\(\frac{1}{1.2.3}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)\)
\(\frac{1}{2.3.4}=\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)\)
.......
\(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
Suy ra \(B=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)=\frac{1}{4}-\frac{1}{2\left(n+1\right)\left(m+2\right)}\)??chắc hết phân tích được rồi:V
1.
Xét hiệu:
\(x^3+y^3-\left(x^2y+xy^2\right)=\left(x^3-x^2y\right)-\left(xy^2+y^3\right)\)
\(=x^2\left(x-y\right)-y^2\left(x-y\right)=\left(x-y\right)\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)=\left(x-y\right)^2\left(x+y\right)\ge0\), Với mọi x, y không âm
Vậy \(x^3+y^3\ge x^2y+xy^2\)với mọi x, y không âm
2. \(111\left(x-2\right)\ge1998\Leftrightarrow x-2\ge\frac{1998}{11}\Leftrightarrow x\ge\frac{1998}{11}+2=\frac{2020}{11}\)
3. Xét hiệu:
\(\frac{a-b}{b}-1=\frac{a}{b}-1-1=\frac{a}{b}-2>\frac{2b}{b}-2=2-2=0\)Với mọi , a, b dương
Vậy \(\frac{a-b}{b}>1\)với mọi a, b dương
4) xét hiệu:
\(x^2+y^2+z^2+14-\left(4x+2y+6z\right)\ge0\)\
<=> \(x^2-4x+4+y^2-2y+1+z^2-6z+9=\left(x-2\right)^2+\left(y-1\right)^2+\left(z-3\right)^2\ge0\)luôn đúng vs mọi x, y, z
Vậy suy ra điều cần chứng minh