K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)

\(\Leftrightarrow\frac{a^2+a\left(b+c\right)}{b+c}+\frac{b^2+b\left(c+a\right)}{c+a}+\frac{c^2+c\left(a+b\right)}{a+b}=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)

13 tháng 1 2018

Có : 

Q = a.(a/b+c) + b.(b/c+a) + c.(c/a+b)

   = a.(a/b+c + 1) + b.(b/c+a + 1) + c.(c/a+b + 1) - (a+b+c)

   = a.(a+b+c)/b+c + b.(a+b+c)/c+a + c.(a+b+c)/a+b - (a+b+c)

   = (a+b+c).(a/b+c + b/c+a + c/a+b) - (a+b+c)

   = (a+b+c)-(a+b+c) = 0

Vậy Q = 0

Tk mk nha

13 tháng 1 2018

Có : x+y = 6 => x^2+2xy+y^2 = 36

xy = 3^2-2 = 7 <=> 2xy = 14

<=> x^2+y^2 = 22

=>  x^4+2x^2y^2+y^4 = 484

<=> x^4+y^4 = 484 - 2x^2y^2 = 484 - 2.(xy)^2 = 484 - 2.7^2 = 386

Xét : 36 x 386 = (x+y).(x^4+y^4) = x^5+y^5+xy.(x^3+y^3) = x^5+y^5+xy.(x+y).(x^2-xy+y^2) = x^5+y^5+7.6.(22-7) = x^5+y^5+630

=> A = x^5+y^5 = 36 x 386 - 630 = 13266

Tk mk nha

10 tháng 1 2018

a)   Với m = 0 thì ta có hệ:

\(\hept{\begin{cases}x-y=1\\x-y=2\end{cases}}\)

Ta thấy ngay phương trình vô nghiệm.

b) \(\hept{\begin{cases}\left(m+1\right)x-y=m+1\\x+\left(m-1\right)y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x-y=m+1\\\left(m+1\right)x+\left(m^2-1\right)y=2\left(m+1\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x-y=m+1\\m^2y=m+1\end{cases}}\)

Với m = 0 : phương trình vô nghiệm.

Với \(m\ne0\), ta có : \(\hept{\begin{cases}\left(m+1\right)x-\frac{m+1}{m^2}=m+1\\y=\frac{m+1}{m^2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{m^2+1}{m^2}\\y=\frac{m+1}{m^2}\end{cases}}\)

Vậy thì \(S=x+y=\frac{m^2+m+2}{m^2}=1+\frac{1}{m}+\frac{2}{m^2}\)

Đặt \(\frac{1}{m}=t\Rightarrow S=2t^2+t+1=2\left(t^2+\frac{1}{2}t+\frac{1}{16}\right)+\frac{7}{8}\)

\(=2\left(t+\frac{1}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\)

Vây minS = \(\frac{7}{8}\) khi m = -4.

Cách giải khác đây: 

Áp dụng bđt bunhia copxki ta có \(A^2\le6\left(a+b+c\right)=6\)vì a+b+c=1

nên \(A\le\sqrt{6}\)

Dấu = xảy ra <=>a=b=c=1/3

8 tháng 1 2018

A B O C M N D

a) Do C là điểm chính giữa cung AB nên AC = BC

Xét tam giác ACN và tam giác BCM có:

AC = BC (cmt)

AN = BM (gt)

\(\widehat{CAN}=\widehat{MBC}\)  (Hai góc nội tiếp cùng chắn cung CM)

\(\Rightarrow\Delta ACN=\Delta BCM\left(c-g-c\right)\)

b) Ta thấy \(\Delta ACN=\Delta BCM\Rightarrow CN=CM\)

Vậy tam giác CMN cân tại C.

Lại có \(\widehat{CMN}=\frac{\widebat{AC}}{2}=\frac{90^o}{2}=45^o\)

Vậy thì tam giác CMN cân, có góc ở đáy bằng 45o nên CMN là tam giác vuông cân.

c) Do DC//AM nên \(\widebat{DA}=\widebat{CM}\)

\(\Rightarrow\widebat{DM}=\widebat{CM}+\widebat{DC}=\widebat{AD}+\widebat{DC}=\widebat{AC}=90^o\)

\(\Rightarrow\widehat{DAM}=\frac{\widebat{DM}}{2}=45^o=\widehat{CNM}\)

Chúng lại ở vị trí đồng vị nên CN // AD.

Xét tứ giác ANCD có DC // AN; AD // CN nên ANCD là hình bình hành (dấu hiệu nhận biết).

BĐT Bunhiacopxki: 

(a2 + b2)(c2 + d2) ≥ (ac + bd)2

Bất đẳng thức này dễ dàng chứng minh bằng cách khai triển, rút gọn và biến đổi thành:

(ad – bc)² ≥ 0

Dấu " = " xảy ra khi    

\(\frac{a}{c}=\frac{b}{d}\)

6 tháng 1 2018

http://congthuc.edu.vn/bat-dang-thuc-bunhiacopxki/

5 tháng 1 2018

\(\hept{\begin{cases}x+y=1999\\y-x=1912\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=1999-x\\1999-x-x=1912\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=1999-x\\1999-2x=1912\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=1999-x\\2x=1999-1912\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=1999-x\\2x=87\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=43,5\\y=1999-43,5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=43,5\\y=1955,5\end{cases}}\)

vậy...

5 tháng 1 2018

cộng  giả thiết lại ta có:

x+y+y-x=1999+1912

=>2y=3911

=>y=1955,5

theo giả thiết y-x=1912, thay y vào ta có:

1955,5-x=1912

=>x=1955,5-1912=43,5