cho tỉ lệ thức x/3=y/4 và 5x - 4y = -5 giúp mik với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án: D.Lê Thánh Tông
Giải thích:
Chính quyền phong kiến thời Lê sơ được hoàn thiện dần và hoàn chỉnh nhất dưới thời vua Lê Thánh Tông.
Trong những năm 1460 – 1471, Lê Thánh Tông tiến hành một cuộc cải cách hành chính lớn.
* Ở Trung ương:
- Đứng đầu là vua, trực tiếp nắm mọi quyền hành.
- Bãi bỏ một số chức quan cao cấp: tướng quốc, đại tổng quản, đại hành khiển.
- Giúp việc cho vua có các quan đại thần, 6 bộ và các cơ quan chuyên môn: Hàn lâm viện, Quốc sử viện, Ngự sử đài.
* Ở địa phương chia cả nước làm 13 đạo thừa tuyên.
Đáp án: A . Được mở rộng về phía Nam
Giải thích:
Lãnh thổ Đại Việt dưới thời vua Lê Thánh Tông được mở rộng hơn về phía Nam so với thời Trần:
- Lãnh thổ Đại Việt sau sự kiện năm 1306 vua Trần Nhân Tông gả công chúa Huyền Trần cho vua Chế Mân đổi lại sính lễ là hai châu Ô và Lý - tức vùng Thuận Hóa
- Năm 1471, sau khi chiếm vùng đất phía Nam Thuận Hóa cho đến đèo Cù Mông, vua Lê Thánh Tông lập thêm đơn vị hành chính thứ 13 - Đạo Thừa Tuyên Quảng Nam gồm 3 phủ: Thăng Hoa, Tư Nghĩa và Hoài Nhơn (nay là Quảng Nam, Quảng Ngãi, Bình Định).
a) Do BD là tia phân giác của ∠ABC (gt)
⇒ ∠ABD = ∠CBD
⇒ ∠ABD = ∠EBD
Xét ∆BDA và ∆BDE có:
BD là cạnh chung
∠ABD = ∠EBD (cmt)
AB = BE (gt)
⇒ ∆BDA = ∆BDE (c-g-c)
b) Do ∆BDA = ∆BDE (cmt)
⇒ AD = DE (hai cạnh tương ứng)
⇒ D nằm trên đường trung trực của AE (1)
Do BA = BE (gt)
⇒ B nằm trên đường trung trực của AE (2)
Từ (1) và (2) ⇒ BD là đường trung trực của AE
⇒ BD ⊥ AE
c) Do ∆BAD = ∆BAE (cmt)
⇒ ∠BAD = ∠BED (hai góc tương ứng)
⇒ ∠BED = 90⁰
⇒ DE ⊥ BE
⇒ DE ⊥ BC
⇒ FE ⊥ BC
⇒ FE là đường cao của ∆BCF
Do CA AB (∆ABC vuông tại A)
⇒ CA ⊥ BF
⇒ CA là đường cao thứ hai của ∆BCF
Mà D là giao điểm của CA và FE
⇒ BD là đường cao thứ ba của ∆BCF
⇒ BD ⊥ CF
Mà BD ⊥ AE (cmt)
⇒ AE // CF
d) Do BD là tia phân giác của ∠ABC (gt)
⇒ BD là tia phân giác của ∠FBC
⇒ BD là đường phân giác của ∆BCF
∆BCF có:
BD là đường cao (cmt)
BD là đường phân giác (cmt)
⇒ ∆BCF cân tại B
⇒ BD là đường trung trực của ∆BCF
Mà M là trung điểm của CF (gt)
⇒ B, D, M thẳng hàng
Giải:
a; Xét tam giác BDA và tam giác BDE có:
BA = BE (gt)
\(\widehat{ABD}\) = \(\widehat{DBE}\) (gt)
Cạnh BD (chung)
Vậy \(\Delta\) BDA = \(\Delta\) BDE (C-g-c)
b; Xét tam giác ABE có
BA = BE (gt)
⇒ tam giác ABE cân tại B
BD là phân giác của góc ABE (gt)
⇒ BD \(\perp\) AE (vì trong tam giác cân đường phân giác cũng là đường cao)
c; \(\Delta\) BDA = \(\Delta\) BDE (cmt)
⇒ \(\widehat{BAD}\) = \(\widehat{BED}\) = 900
Xét tam giác vuông EBF và tam giác vuông ABC có:
BE = AB
\(\widehat{FBE}\) = \(\widehat{CBA}\)
⇒ \(\Delta\) EBF = \(\Delta\) ABC (góc nhọn, cạnh góc vuông)
⇒ BF = BC
⇒ \(\Delta\) BFC cân tại B
⇒ BD \(\perp\) FC (trong tam giác cân đường cao cũng là đường phân giác)
Mặt khác BD \(\perp\) AE (cmt)
⇒ AE // FC (vì hai đường thẳng cùng vuông góc đường thẳng thứ ba thì song song với nhau)
d; BD là phân giác của tam giác cân BFC nên BD là đường trung tuyến của FC, mà M là trung điểm CF vậy B, D, M thẳng hàng vì qua một đỉnh của tam giác chỉ kẻ được một trung tuyến ứng với cạnh đối diện của đỉnh đó.
a: Xét ΔOAC và ΔOBC có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)
OC chung
Do đó: ΔOAC=ΔOBC
b: TA có: ΔOAC=ΔOBC
=>\(\widehat{OAC}=\widehat{OBC}\)
=>\(\widehat{OAD}=\widehat{OBF}\)
Xét ΔOAD và ΔOBF có
\(\widehat{OAD}=\widehat{OBF}\)
OA=OB
\(\widehat{AOD}\) chung
Do đó: ΔOAD=ΔOBF
c: Ta có: \(\widehat{OAC}+\widehat{CAF}=180^0\)(kề bù)
\(\widehat{OBC}+\widehat{CBD}=180^0\)(kề bù)
mà \(\widehat{OAC}=\widehat{OBC}\)
nên \(\widehat{CAF}=\widehat{CBD}\)
Ta có; ΔOAD=ΔOBF
=>\(\widehat{ODA}=\widehat{OFB}\) và OD=OF
Ta có: OA+AF=OF
OB+BD=OD
mà OA=OB và OF=OD
nên AF=BD
Xét ΔCAF và ΔCBD có
\(\widehat{CAF}=\widehat{CBD}\)
AF=BD
\(\widehat{CFA}=\widehat{CDB}\)
Do đó; ΔCAF=ΔCBD
=>CF=CD và CA=CB
Ta có: OA=OB
=>O nằm trên đường trung trực của BA(1)
Ta có: CA=CB
=>C nằm trên đường trung trực của BA(2)
Từ (1),(2) suy ra OC là đường trung trực của BA
d: Ta có: OD=OF
=>O nằm trên đường trung trực của DF(3)
Ta có: CD=CF
=>C nằm trên đường trung trực của DF(4)
Ta có: MD=MF
=>M nằm trên đường trung trực của DF(5)
Từ (3),(4),(5) suy ra O,C,M thẳng hàng
a: Ta có: \(\widehat{C}+\widehat{DEC}=90^0\)
\(\widehat{C}+\widehat{B}=90^0\)
Do đó: \(\widehat{DEC}=\widehat{B}\)
b: Xét ΔAFD và ΔAED có
AF=AE
\(\widehat{FAD}=\widehat{EAD}\)
AD chung
Do đó: ΔAFD=ΔAED
=>\(\widehat{AFD}=\widehat{AED}\)
mà \(\widehat{AFD}+\widehat{DFB}=180^0\)(hai góc kề bù)
và \(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)
nên \(\widehat{DFB}=\widehat{CED}\)
=>\(\widehat{DFB}=\widehat{DBF}\)
=>ΔDBF cân tại D
c: Ta có: ΔAFD=ΔAED
=>DF=DE
mà DF=DB
nên DE=DB
Dù ai đi ngược về xuôi
Nhớ ngày giỗ tổ Mùng Mười Tháng Ba
\(\dfrac{x}{3}\) = \(\dfrac{5x}{15}\) = \(\dfrac{y}{4}\) = \(\dfrac{4y}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{5x}{15}\) = \(\dfrac{4y}{16}\) = \(\dfrac{5x-4y}{15-16}\) = \(\dfrac{-5}{-1}\) = 5
\(x\) = 5 : \(\dfrac{5}{15}\) = 15
y = 5 : \(\dfrac{4}{16}\) = 20
Vậy (\(x;y\)) = (15; 20)