\(\frac{x^2+2mx+3m}{x^2+2x+2}>0\)
Tìm đièu kiện của m sao cho các bất phương trình sau luôn đúng với mọi x.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1+\sin^2x}{1-\sin^2x}=\frac{1+1-\cos^2x}{\cos^2x}=\frac{2}{\cos^2x}-1=2\left(\tan^2x+1\right)-1=2\tan^2x+1\)
Ta cần chứng minh: \(3\left(a^2+b^2\right)+c^2\ge2\left(ab+bc+ca\right)\)
Nó đúng bởi \(3\left(a^2+b^2\right)+c^2-2\left(ab+bc+ca\right)=\left(a-b\right)^2+2\left(a-\frac{c}{2}\right)^2+2\left(b-\frac{c}{2}\right)^2\ge0\)
Đẳng thức xảy ra khi \(a=b=\frac{1}{\sqrt{5}};c=\frac{2}{\sqrt{5}}\)
Done!
ĐK: \(x\ge1\)Bpt \(\Leftrightarrow\sqrt{x^2+2x+92}-10\ge\left(x^2+2x-8\right)+\left(\sqrt{x-1}-1\right)\)
\(\Leftrightarrow\frac{x^2+2x-8}{\sqrt{x^2+2x+92}+10}\ge\left(x-2\right)\left(x+4\right)+\frac{x-2}{\sqrt{x-1}+1}\)
\(\Leftrightarrow\left(x-2\right)\left[\frac{x+4}{\sqrt{x^2+2x+92}+10}-\left(x+4\right)-\frac{1}{\sqrt{x-1}+1}\right]\ge0\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x+4\right)\left(\frac{1}{\sqrt{x^2+2x+92}+10}-1\right)-\frac{1}{\sqrt{x-1}+1}\right]\ge0\)
Ta có: \(\left(x+4\right)\left(\frac{1}{\sqrt{x^2+2x+92}+10}-1\right)-\frac{1}{\sqrt{x-1}+1}< 0\left(\forall x\ge1\right)\)
Do đó bpt \(\Leftrightarrow x-2\le0\Leftrightarrow x\le2\)
Kết hợp với ĐK ta có nghiệm của bpt là:\(1\le x\le2\)
ta có \(x^2+2x+2=\left(x+1\right)^2+1>0\forall x\) nên
\(\frac{x^2+2mx+3m}{x^2+2x+2}>0\Leftrightarrow x^2+2mx+3m>0\Leftrightarrow\Delta'=m^2-3m< 0\Leftrightarrow m\in\left(0,3\right)\)