Giải phương trình
\(2x+3+\sqrt{4x^2+9x+2}=2\sqrt{x+2}+\sqrt{4x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có bất đẳng thức phụ sau (bđt Mincopski)
\(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\left(x;y;z;t\inℝ\right)\)
Thật vậy :
\(bđt\Leftrightarrow x^2+y^2+2\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}+z^2+t^2\ge x^2+2xz+z^2+y^2+2yt+t^2\)
\(\Leftrightarrow\sqrt{x^2z^2+x^2t^2+y^2z^2+y^2t^2}\ge xz+yt\)
*Nếu xz + yt < 0 thì bđt hiển nhiên đúng
*Nếu xz + yt > 0 thì bđt trở thành
\(x^2z^2+x^2t^2+y^2z^2+y^2t^2\ge x^2z^2+2xyzt+y^2t^2\)
\(\Leftrightarrow x^2t^2-2xyzt+y^2z^2\ge0\)
\(\Leftrightarrow\left(xt-yz\right)^2\ge0\)(ĐÚng)
Vậy bđt được chứng minh
Áp dụng bđt trên 2 lần ta được
\(P\ge\sqrt{\left(5+5\right)^2+\left(a^2+b^2\right)^2}+\sqrt{25+c^4}\)
\(\ge\sqrt{\left(5+5+5\right)^2+\left(a^2+b^2+c^2\right)^2}\)
\(=\sqrt{225+\left(a^2+b^2+c^2\right)^2}\)
Bài toán quay về tìm \(min\left(a^2+b^2+c^2\right)\)biết \(2\left(a+b+c\right)+ab+bc+ca=18\)
Ta có bđt phụ sau \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)(Tự chứng minh bằng biến đổi tương đương nhé)
\(\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)
Đặt \(3\left(a^2+b^2+c^2\right)=t\left(t\ge0\right)\)
\(\Rightarrow a+b+c\le\sqrt{3t}\)
Lại có bđt phụ sau \(ab+bc+ca\le a^2+b^2+c^2=\frac{t}{3}\)
Tóm lại ta thu được 2 bđt sau \(\hept{\begin{cases}a+b+c\le\sqrt{3t}\\ab+bc+ca\le\frac{t}{3}\end{cases}}\)
Ta có \(18=2\left(a+b+c\right)+ab+bc+ca\le2\sqrt{3t}+\frac{t}{3}\)
\(\Leftrightarrow\frac{t}{3}+2\sqrt{3t}-18\ge0\)
\(\Leftrightarrow t+6\sqrt{3t}-54\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{t}\le-9-3\sqrt{3}\left(Loa_.i\cdot do\cdot\sqrt{t}\ge0\right)\\\sqrt{t}\ge9-3\sqrt{3}\left(Tm\right)\end{cases}}\)
Có \(\sqrt{t}\ge9-3\sqrt{3}\)
\(\Leftrightarrow\sqrt{3\left(a^2+b^2+c^2\right)}\ge9-3\sqrt{3}\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge108-54\sqrt{3}\)
\(\Leftrightarrow a^2+b^2+c^2\ge36-18\sqrt{3}\)
Quay trở lại bài toán \(P\ge\sqrt{225+\left(a^2+b^2+c^2\right)^2}\ge\sqrt{225+\left(36-18\sqrt{3}\right)^2}\)
Dấu "=" xảy ra tại a = b = c
P/S: sai đâu thì thôi nha :v a lười ktra lại lắm
Biểu thức B ko bt có sai đề ở căn thứ 2 ko ạ
Nếu nhân B với căn 2 thì cái căn thức nhất tách đc thành hđt (a+b)2 đấy ạ nhưng cái căn thứ 2 thì ko tách đc
He received another letter from her as soon as he found the time to reply to her. ( ROUND)
--> No sooner had he GOT ROUND TO replying to her than he received another letter from her.
no sooner had he got round to reliping to her than he receiived another letter from her
bạn tích đung cho mình nhé
VÌ A là số nguyên , x nguyên
=> \(\sqrt{x-4}\)là số nguyên
\(A=\frac{2x\sqrt{x-4}}{x-4}=\frac{2x-8+8}{\sqrt{x-4}}=2\sqrt{x-4}+\frac{8}{\sqrt{x-4}}\)là số nguyên
=> \(\frac{8}{\sqrt{x-4}}\)là số nguyên
=> \(\sqrt{x-4}\in\left\{1;2;4;8\right\}\)
=> \(x\in\left\{5;8;20;68\right\}\)
Vậy \(x\in\left\{5;8;20;68\right\}\)
À câu a mình tự làm được rồi nhé! Các bạn chỉ cần làm câu b cho mình là được.
b, \(\frac{2\sqrt{x}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)
ĐK \(x\ge0\)
Pt
<=> \(2\sqrt{x}+\sqrt{x\left(x+1\right)}=\sqrt{\left(x+1\right)\left(x+9\right)}\)
<=> \(4x+x^2+x+4\sqrt{x^2\left(x+1\right)}=x^2+10x+9\)
<=> \(4x\sqrt{x+1}=5x+9\)
<=> \(16x^2\left(x+1\right)=25x^2+90x+81\)với mọi \(x\ge0\)
<=> \(16x^3-9x^2-90x-81=0\)
<=> \(x=3\)(tm ĐK)
Vậy x=3
Sai bất đẳng thức giữa của (1) rồi\(x+1>0\Leftrightarrow x>-1.\)
Suy ra phải sửa luôn mấy phần bên dưới. Và kết luận : \(-1< x\le3\)
\(2x+3+\sqrt{4x^2+9x+2}=2\sqrt{x+2}+\sqrt{4x+1}\left(x\ge-\frac{1}{4}\right)\)
\(\Leftrightarrow2\left(x+2\right)-1+\sqrt{\left(x+2\right)\left(4x+1\right)}=2\sqrt{x+2}+\sqrt{4x+1}\)
\(\Leftrightarrow4\left(x+2\right)-2+2\sqrt{x+2}.\sqrt{4x+1}=4\sqrt{x+2}+2\sqrt{4x+1}\)
Đặt \(\hept{\begin{cases}2\sqrt{x+2}=a\left(a\ge0\right)\\\sqrt{4x+1}=b\left(b\ge0\right)\end{cases}\Rightarrow}a^2-b^2=4\left(x+2\right)-4x-1=7\)\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=7\)(1)
\(pt:a^2-2+ab=2a+2b\)
\(\Leftrightarrow a\left(a+b\right)-2\left(a+b\right)=2\)
\(\Leftrightarrow\left(a-2\right)\left(a+b\right)=2\)(2)
Nhân chéo 2 vế của (1) với (2) được
\(7\left(a-2\right)\left(a+b\right)=2\left(a-b\right)\left(a+b\right)\)
\(\Leftrightarrow7\left(a-2\right)=2\left(a-b\right)\left(Do\left(a+b\right)>0\right)\)
\(\Leftrightarrow7a-14=2a-2b\)
\(\Leftrightarrow5a=14-2b\)
\(\Leftrightarrow10\sqrt{x+2}=14-2\sqrt{4x+1}\)
\(\Leftrightarrow5\sqrt{x+2}=7-\sqrt{4x+1}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{4x+1}\le7\\25\left(x+2\right)=49-14\sqrt{4x+1}+4x+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}0\le4x+1\le49\\21x=-14\sqrt{4x+1}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-\frac{1}{4}\le x\le0\\441x^2=196\left(4x+1\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-\frac{1}{4}\le x\le0\\441x^2-784x-196=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-\frac{1}{4}\le x\le0\\49\left(9x+2\right)\left(x-2\right)=0\end{cases}}\)
\(\Leftrightarrow x=-\frac{2}{9}\left(TmĐKXĐ\right)\)
Vậy
Incursion_03 em thử nha, sai thì thôi ạ, em hơi nghiện liên hợp r.
ĐK: x>=-1/4
PT \(\Leftrightarrow2x+\frac{31}{9}+\sqrt{4x^2+9x+2}-\frac{4}{9}=2\sqrt{x+2}-\frac{8}{3}+\sqrt{4x+1}-\frac{1}{3}+3\)
\(\Leftrightarrow2\left(x+\frac{2}{9}\right)+\frac{\left(x+\frac{2}{9}\right)\left(4x+\frac{73}{9}\right)}{\sqrt{4x^2+9x+2}+\frac{4}{9}}=\frac{4\left(x+\frac{2}{9}\right)}{2\sqrt{x+2}+\frac{8}{3}}+\frac{4\left(x+\frac{2}{9}\right)}{\sqrt{4x+1}+\frac{1}{3}}\)
\(\Leftrightarrow\left(x+\frac{2}{9}\right)\left[2+\frac{4x+\frac{73}{9}}{\sqrt{4x^2+9x+2}+\frac{4}{9}}-4\left(\frac{1}{2\sqrt{x+2}+\frac{8}{3}}+\frac{1}{\sqrt{4x+1}+\frac{1}{3}}\right)\right]=0\)
Cái ngoặc to em chịu:( đang suy nghĩ