lúc 6:20 sáng an đi xe đạp từ nhà đến trường quãng đường dài 4 km cùng lúc 6:22 bình cũng đi xe đạp từ nhà đến trường quãng đường dài 3km và cả hai đến trường cùng một lúc tính vận tốc trung bình của an và bình biết vận tốc trung bình của an hơn vận tốc trung bình của bình 2 km/h.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+3y^3=2023\)
\(\Leftrightarrow\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+3y^3=2023\)
\(\Leftrightarrow\left(x^2+8x+7\right)\left(x^2+8x+15\right)+3y^3=2023\) (*)
Đặt \(x^2+8x+11=t\left(t\inℤ;t\ge-5\right)\), pt (*) trở thành \(\left(t-4\right)\left(t+4\right)+3y^3=2023\)
\(\Leftrightarrow t^2-16+3y^3=2023\)
\(\Leftrightarrow t^2+3y^3=2039\) (1)
Xét pt (1), dễ thấy \(t^2\equiv0\left(mod3\right)\) hoặc \(t^2\equiv1\left(mod3\right)\), lại có \(3y^3\equiv0\left(mod3\right)\) nên \(VT\equiv0\left(mod3\right)\) hoặc \(VT\equiv1\left(mod3\right)\). Nhưng \(VP=2039\equiv2\left(mod3\right)\), điều này có nghĩa là (1) vô nghiệm.
Vậy phương trình đã cho không thể có nghiệm nguyên.
(x+1)(x+3)(x+5)(x+7)+3y3=2023
⇔[(�+1)(�+7)][(�+3)(�+5)]+3�3=2023⇔[(x+1)(x+7)][(x+3)(x+5)]+3y3=2023
⇔(�2+8�+7)(�2+8�+15)+3�3=2023⇔(x2+8x+7)(x2+8x+15)+3y3=2023 (*)
Đặt �2+8�+11=�(�∈Z;�≥−5)x2+8x+11=t(t∈Z;t≥−5), pt (*) trở thành (�−4)(�+4)+3�3=2023(t−4)(t+4)+3y3=2023
⇔�2−16+3�3=2023⇔t2−16+3y3=2023
⇔�2+3�3=2039⇔t2+3y3=2039 (1)
Xét pt (1), dễ thấy �2≡0(���3)t2≡0(mod3) hoặc �2≡1(���3)t2≡1(mod3), lại có 3�3≡0(���3)3y3≡0(mod3) nên ��≡0(���3)VT≡0(mod3) hoặc ��≡1(���3)VT≡1(mod3). Nhưng ��=2039≡2(���3)VP=2039≡2(mod3), điều này có nghĩa là (1) vô nghiệm.
Vậy phương trình đã cho không thể có nghiệm nguyên
Điều kiện: \(y\ge0\)
pt thứ nhất của hệ \(\Leftrightarrow\left(y-x+3\right)^2=0\) \(\Leftrightarrow y-x+3=0\) \(\Leftrightarrow y=x-3\)
Thay vào pt thứ hai của hệ, ta được \(2x^2+3x+x-3-\left(3x+1\right)\sqrt{x-3}-2=0\)
\(\Leftrightarrow2x^2+4x-5=\left(3x+1\right)\sqrt{x-3}\) \(\left(x\ge3\right)\)
\(\Rightarrow\left(2x^2+4x-5\right)^2=\left[\left(3x+1\right)\sqrt{x-3}\right]^2\)
\(\Leftrightarrow4x^4+16x^2+25+16x^3-20x^2-40x=\left(3x+1\right)^2\left(x-3\right)\)
\(\Leftrightarrow4x^4+16x^3-4x^2-40x+25=9x^3-21x^2-17x-3\)
\(\Leftrightarrow4x^4+7x^3+17x^2-23x+28=0\)
Đặt \(f\left(x\right)=4x^4+7x^3+17x^2-23x+28\)
\(f\left(x\right)=4x^4+7x^3+17x^2+4+4+...+4-23x+4\) (có 6 số 4 ở giữa)
\(f\left(x\right)\ge9\sqrt[9]{4x^4.7x^3.17x^2.4^6}-23x+4\) \(=\left(9\sqrt[9]{1949696}-23\right)x+4\)
Hiển nhiên \(9\sqrt[9]{1949696}>23\). Lại có \(x\ge3\) nên \(f\left(x\right)>0\), Như vậy pt \(f\left(x\right)=0\) vô nghiệm. Điều đó có nghĩa là phương trình đã cho vô nghiệm.
Khổ 4: Ước nguyện của tác giả và cảm xúc khi rời xa.
- Cảm xúc bộc lộ trực tiếp (thương trào nước mắt) diễn tả sự lưu luyến, nhớ thương.
- Điệp ngữ " muốn làm" : thể hiện ước nguyện chân thành, gần gũi, thiết tha, mãnh liệt.
- Làm con chim, đóa hoa, cây tre. Chúng đều là sự vật nhỏ bé, bình dị nhưng mang nhiều ý nghĩa => Muốn được ở mãi bên Bác - người cha già kính yêu của dân tộc Việt Nam.
- Hình ảnh cây tre trung hiếu ( nghệ thuật: nhân hóa, ẩn dụ): thể hiện lòng kính yêu, trung thành, biết ơn vô hạn cuat nhà thơ đối với Bác.
Mình không trả lời được, nhưng mình có thể hỏi thử xem mình ra câu này có đúng không nhé.
1.
c, \(A=\dfrac{\sqrt{x}-4}{\sqrt{x}-2}=1+\dfrac{-2}{\sqrt{x}-2}\)
Để A là số tự nhiên \(\Rightarrow\left\{{}\begin{matrix}1+\dfrac{-2}{\sqrt{x}-2}\ge0\\1+\dfrac{-2}{\sqrt{x}-2}\inℤ\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2}{\sqrt{x}-2}\le1\\\sqrt{x}-2\inƯ\left(-2\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{-\sqrt{x}}{\sqrt{x}-2}\le0\\\sqrt{x}-2\in\left\{\pm1;\pm2\right\}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>4\\x\in\left\{0;1;9;16\right\}\end{matrix}\right.\)
\(\Rightarrow x\in\left\{9;16\right\}\)
Vậy...