Bài 4 (3,5 điểm):
1) Một chiếc long đen bằng sắt có bề mặt là một hình vành khuyên. Tính diện tích bề mặt
(một mặt) của chiếc long đen này biết rằng đường kính của hai đường tròn đồng tâm
lần lượt là 3,6cm và 6cm (cho π≈3,14 ) (làm tròn kết quả đến hàng phần mười).
2) Cho ABC vuông tại A. Điểm M thuộc cạnh AC. Vẽ đường tròn tâm O đường kính
MC cắt BC tại E. Nối BM cắt đường tròn (O) tại N. Nối AN cắt đường tròn (O) tại D.
a) Chứng minh tứ giác BANC nội tiếp được.
b) Chứng minh CA là tia phân giác của góc BCD.
c) Chứng minh tứ giác ABED là hình thang.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>BC\(\perp\)AM tại C
Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
=>AD\(\perp\)MB tại D
Xét ΔMAB có
AD,BC là các đường cao
AD cắt BC tại I
Do đó: I là trực tâm của ΔMAB
=>MI\(\perp\)AB
mà MH\(\perp\)AB
và MI,MH có điểm chung là M
nên M,I,H thẳng hàng
Xét tứ giác MCID có \(\widehat{MCI}+\widehat{MDI}=90^0+90^0=180^0\)
nên MCID là tứ giác nội tiếp đường tròn đường kính MI
=>MCID nội tiếp (K)
=>KC=KI
=>ΔKCI cân tại K
=>\(\widehat{KCI}=\widehat{KIC}\)
mà \(\widehat{KIC}=\widehat{MIC}=\widehat{CAB}\left(=90^0-\widehat{AMH}\right)\)
nên \(\widehat{KCI}=\widehat{CAB}\)
ΔOBC có OB=OC
nên ΔOBC cân tại O
=>\(\widehat{OCB}=\widehat{OBC}\)
\(\widehat{KCO}=\widehat{KCB}+\widehat{OCB}=\widehat{CAB}+\widehat{CBA}=90^0\)
Xét tứ giác KCOH có \(\widehat{KCO}+\widehat{KHO}=90^0+90^0=180^0\)
nên KCOH là tứ giác nội tiếp

a: Xét (O) có
ΔADC nội tiếp
AC là đường kính
Do đó: ΔADC vuông tại D
=>AD\(\perp\)MC tại D
=>\(\widehat{ADM}=90^0\)
Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1),(2) suy ra MO là đường trung trực của AB
=>MO\(\perp\)AB tại H và H là trung điểm của AB
=>\(\widehat{MHA}=90^0=\widehat{MDA}\)
=>MDHA nội tiếp
b: Xét ΔOAM vuông tại A có AH là đường cao
nên \(MH\cdot MO=MA^2\left(3\right)\)
Xét ΔACM vuông tại A có AD là đường cao
nên \(MD\cdot MC=MA^2\left(4\right)\)
Từ (3),(4) suy ra \(MH\cdot MO=MD\cdot MC\)

a: Thay x=1 và y=-2 vào (P), ta được:
\(a\cdot1^2=-2\)
=>\(a\cdot1=-2\)
=>a=-2
b: Khi a=-2 thì \(y=a\cdot x^2=-2x^2\)
Vẽ đồ thị:
c: Thay x=2 vào (P), ta được:
\(y=-2\cdot2^2=-8\)

\(2x^2-3x+1=0\\ \Delta=b^2-4ac=\left(-3\right)^2-4\cdot2\cdot1=1>0\\ x_1=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-3\right)-1}{2\cdot2}=0,5\\ x_2=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-3\right)+1}{2\cdot2}=1\\ \text{vậy phương trình có 2 nghiệm là }x_1=0,5;x_2=1\)
\(2x^2-3x+1=0\)
Ta có: \(\Delta=\left(-3\right)^2-4\cdot2\cdot1=1\left(>0\right)\)
Do \(\Delta>0\) nên phương trình có hai nghiệm phân biệt:
x1 = \(\frac{-b+\sqrt{\Delta}}{2a}=\frac{-\left(-3\right)+\sqrt1}{4}=\frac{3+1}{4}=1\)
x2 = \(\frac{-b-\sqrt{\Delta}}{2a}=\frac{-\left(-3\right)-\sqrt1}{4}=\frac{3-1}{4}=\frac24=\frac12\)

a: Thay m=1 vào (1), ta được:
\(x^2-1\cdot x+1-3=0\)
=>\(x^2-x-2=0\)
=>(x-2)(x+1)=0
=>\(\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
b: \(\text{Δ}=\left(-m\right)^2-4\left(m-3\right)\)
\(=m^2-4m+12\)
\(=m^2-4m+4+8=\left(m-2\right)^2+8>=8>0\forall m\)
=>Phương trình luôn có hai nghiệm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m\\x_1x_2=\dfrac{c}{a}=m-3\end{matrix}\right.\)
\(x_1^2+x_2^2=6\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2=6\)
=>\(m^2-2\left(m-3\right)-6=0\)
=>\(m^2-2m=0\)
=>m(m-2)=0
=>\(\left[{}\begin{matrix}m=0\\m-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\)

Câu a: Chứng minh tứ giác \(A E H F\) nội tiếp đường tròn
Bước 1: Chứng minh \(\angle A E F + \angle A H F = 180^{\circ}\)
- Vì \(B E\) và \(C F\) là các đường cao của tam giác \(A B C\), ta có: \(\angle A E B = 90^{\circ} \text{v} \overset{ˋ}{\text{a}} \angle A F C = 90^{\circ}\)
- \(H\) là trực tâm tam giác \(A B C\), nên \(H\) nằm trên cả ba đường cao.
- Xét tứ giác \(A E H F\), ta có: \(\angle A E F + \angle A H F = \angle A E B + \angle A F C = 90^{\circ} + 90^{\circ} = 180^{\circ}\)
- Tứ giác có tổng hai góc đối bằng \(180^{\circ}\), suy ra nó nội tiếp đường tròn.
Kết luận: Tứ giác \(A E H F\) nội tiếp.
Câu b: Chứng minh \(D I = D J\)
Bước 1: Sử dụng định nghĩa song song
- Qua \(D\), kẻ đường thẳng song song với \(B E\) cắt \(B E\) tại \(I\) và cắt \(A C\) tại \(J\).
- Vì \(D I \parallel B E\), ta có: \(\angle I D J = \angle E D B\) (hai góc so le trong).
Bước 2: Chứng minh \(D I = D J\)
- Xét tam giác \(D B E\), vì \(A D\) là đường cao nên \(D\) là trung điểm của \(B E\).
- Vì \(D I \parallel B E\) và \(D I\) cắt \(A C\), theo tính chất đường trung bình trong tam giác, ta có: \(D I = D J\) (do \(D I J\) là đoạn trung bình trong tam giác \(A B E\)).
Kết luận: \(D I = D J\).

Bài 2:
a: Xét (O) có
ΔCNM nội tiếp
CM là đường kính
Do đó: ΔCNM vuông tại N
=>CN\(\perp\)BN tại N
Xét tứ giác CNAB có \(\widehat{CNB}=\widehat{CAB}=90^0\)
nên CNAB là tứ giác nội tiếp
b: Xét (O) có
\(\widehat{DNM};\widehat{DCM}\) là các góc nội tiếp cùng chắn cung DM
=>\(\widehat{DNM}=\widehat{DCM}\)
mà \(\widehat{DNM}=\widehat{ANB}=\widehat{ACB}\)(CNAB nội tiếp)
nên \(\widehat{DCA}=\widehat{BCA}\)
=>CA là phân giác của góc BCD
c: C,E,D,N cùng thuộc (O)
=>CEDN nội tiếp
=>\(\widehat{CED}+\widehat{CND}=180^0\)
mà \(\widehat{CND}+\widehat{CBA}=180^0\)(CNAB nội tiếp)
nên \(\widehat{CED}=\widehat{CBA}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên ED//AB
=>ABED là hình thang