K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2024

tk

chọn B

29 tháng 6 2024

?

 

Đề thi đánh giá năng lực

28 tháng 6 2024

khong bt

29 tháng 6 2024

Lấy điểm A bất kì nằm trên đường tròn đáy.

Khi đó góc tạo bởi đường sinh và mặt phẳng đáy chính là \(\widehat{SAO}=45^o\)

Do đó \(h=r=\dfrac{a}{\sqrt{2}}\)

\(\Rightarrow S_{xq}=\pi rl=\pi.\dfrac{a}{\sqrt{2}}.a=\dfrac{\pi a^2}{\sqrt{2}}\)

\(S_{tp}=S_{xq}+\pi r^2=\dfrac{\pi a^2}{\sqrt{2}}+\pi\left(\dfrac{a}{\sqrt{2}}\right)^2=\dfrac{\pi a^2\sqrt{2}+\pi a^2}{2}\) 

 

28 tháng 6 2024

1) TXĐ: \(D=ℝ\)

 \(9^x+3.6^x=4^{x+1}\)

\(\Leftrightarrow9^x-4.4^x+3.6^x=0\)

\(\Leftrightarrow\dfrac{9^x}{4^x}-4+3.\dfrac{6^x}{4^x}=0\)

\(\Leftrightarrow\left(\dfrac{9}{4}\right)^x+3\left(\dfrac{6}{4}\right)^x-4=0\)

\(\Leftrightarrow\left[\left(\dfrac{3}{2}\right)^2\right]^x+3\left(\dfrac{3}{2}\right)^x-4=0\)

\(\Leftrightarrow\left[\left(\dfrac{3}{2}\right)^x\right]^2+3\left(\dfrac{3}{2}\right)^x-4=0\)

\(\Leftrightarrow\left[\left(\dfrac{3}{2}\right)^x-1\right]\left[\left(\dfrac{3}{2}\right)^x+4\right]=0\)

\(\Leftrightarrow\left(\dfrac{3}{2}\right)^x=1\) (vì \(\left(\dfrac{3}{2}\right)^x>0\))

\(\Leftrightarrow x=0\)

Vậy tập nghiệm của pt đã cho là \(S=\left\{0\right\}\)

2)

a) \(D=ℝ\)

Với \(m=1\) thì (1) thành:

\(\left(\sqrt{2+\sqrt{3}}\right)^{\left|x\right|}+\left(\sqrt{2-\sqrt{3}}\right)^{\left|x\right|}=4\)

Để ý rằng \(\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}=1\) \(\Leftrightarrow\sqrt{2-\sqrt{3}}=\dfrac{1}{\sqrt{2+\sqrt{3}}}\)

Do đó pt \(\Leftrightarrow\left(\sqrt{2+\sqrt{3}}\right)^{\left|x\right|}+\left(\dfrac{1}{\sqrt{2+\sqrt{3}}}\right)^{\left|x\right|}-4=0\)

Đặt \(\left(\sqrt{2+\sqrt{3}}\right)^{\left|x\right|}=t\left(t\ge1\right)\) thì pt thành:

\(t+\dfrac{1}{t}-4=0\)

\(\Leftrightarrow t^2-4t+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=2+\sqrt{3}\left(nhận\right)\\t=2-\sqrt{3}\left(loại\right)\end{matrix}\right.\)

Vậy \(\left(\sqrt{2+\sqrt{3}}\right)^{\left|x\right|}=2+\sqrt{3}\)

\(\Leftrightarrow\left|x\right|=2\)

\(\Leftrightarrow x=\pm2\)

Vậy tập nghiệm của pt đã cho là \(S=\left\{\pm2\right\}\)]

 

28 tháng 6 2024

2b) Đặt \(f\left(x\right)=\left(\sqrt{2+\sqrt{3}}\right)^{\left|x\right|}+\left(\sqrt{2-\sqrt{3}}\right)^{\left|x\right|}\)

\(f\left(x\right)=\left(\sqrt{2+\sqrt{3}}\right)^{\left|x\right|}+\dfrac{1}{\left(\sqrt{2+\sqrt{3}}\right)^{\left|x\right|}}\)

Đặt \(\left(\sqrt{2+\sqrt{3}}\right)^{\left|x\right|}=t\left(t\ge1\right)\) thì \(f\left(x\right)=g\left(t\right)=t+\dfrac{1}{t}\)

\(g'\left(t\right)=1-\dfrac{1}{t^2}\ge0,\forall t\ge1\)

Lập BBT, ta thấy để \(g\left(t\right)=4m\) có nghiệm thì \(t\ge1\). Tuy nhiên, với \(t>1\) thì sẽ có 2 số \(x\) thỏa mãn \(\left(\sqrt{2+\sqrt{3}}\right)^{\left|x\right|}=t\) (là \(\log_{\sqrt{2+\sqrt{3}}}t\)

 và \(-\log_{\sqrt{2+\sqrt{3}}}t\))

Với \(t=1\), chỉ có \(x=0\) là thỏa mãn. Như vậy, để pt đã cho có nghiệm duy nhất thì \(t=1\)

\(\Leftrightarrow m=g\left(1\right)=2\)

 Vậy \(m=2\)

26 tháng 6 2024

\(D=ℝ\)

Có \(y'=x^2-2x-m\)

Xét \(y'=0\) 

\(\Leftrightarrow x^2-2x-m=0\)

\(\Leftrightarrow m=x^2-2x\)    (1)

YCBT \(\Leftrightarrow\) (1) có 2 nghiệm phân biệt thuộc \(\left(3;4\right)\)

 Đặt \(f\left(x\right)=x^2-2x\). Khi đó \(f'\left(x\right)=2x-2\)

 \(f'\left(x\right)=0\Leftrightarrow x=1\)

 Lập BBT, ta thấy để \(m=f\left(x\right)\) có 2 nghiệm phân biệt thuộc \(\left(3;4\right)\) thì \(3< m< 8\)

 Khi đó \(m\in\left\{4;5;6;7\right\}\), suy ra có 4 giá trị nguyên của m thỏa mãn ycbt.

 -> Chọn B.

 

 

26 tháng 6 2024

BBT của \(f\left(x\right)\):

 

25 tháng 6 2024

b) Xét pt hoành độ giao điểm của hàm số đã cho và Ox là \(2x^3+2\left(6m-1\right)x^2-3\left(2m-1\right)x-3\left(1+2m\right)=0\)    (*)

Ta thấy \(x=1\) là nghiệm của pt trên. Lập sơ đồ Horner:

  \(2\) \(2\left(6m-1\right)\) \(-3\left(2m-1\right)\) \(-3\left(1+2m\right)\)
\(x=1\) \(2\) \(12m\) \(6m+3\) \(0\)

Do đó pt (*) 

\(\Leftrightarrow\left(x-1\right)\left(2x^2+12mx+6m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\2x^2+12mx+6m+3=0\end{matrix}\right.\)

 Xét pt \(2x^2+12mx+6m+3=0\)      (1)

 Ycbt \(\Leftrightarrow\) pt (1) có 2 nghiệm phân biệt \(x_1,x_2\) khác 1 và thỏa mãn \(x_1^2+x_2^2=27\)

 Có \(\Delta'=\left(6m\right)^2-2\left(6m+3\right)=36m^2-12m-6>0\) 

 \(\Leftrightarrow\left[{}\begin{matrix}m>\dfrac{1+\sqrt{7}}{6}\\m< \dfrac{1-\sqrt{7}}{6}\end{matrix}\right.\)

Có 2 nghiệm khác 1 \(\Leftrightarrow2.1^2+12m.1+6m+3\ne0\) 

\(\Leftrightarrow18m+5\ne0\)

\(\Leftrightarrow m\ne-\dfrac{5}{18}\)

Theo định lý Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-6m\\x_1x_2=\dfrac{6m+3}{2}\end{matrix}\right.\)

Để \(x_1^2+x_2^2=27\) 

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=27\)

\(\Leftrightarrow\left(-6m\right)^2-2.\dfrac{6m+3}{2}=27\)

\(\Leftrightarrow36m^2-6m-3=27\)

\(\Leftrightarrow6m^2-m-5=0\)

\(\Leftrightarrow6m^2-6m+5m-5=0\)

\(\Leftrightarrow6m\left(m-1\right)+5\left(m-1\right)=0\)

\(\Leftrightarrow\left(m-1\right)\left(6m+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\left(nhận\right)\\m=-\dfrac{5}{6}\left(nhận\right)\end{matrix}\right.\)

Vậy \(m=1\) hoặc \(m=-\dfrac{5}{6}\) thỏa ycbt.

25 tháng 6 2024

c) Xét pt \(x^3-3mx^2+\left(3m-1\right)x+6m=0\)   (*)

Ta thấy (*) có nghiệm \(x=-1\). Lập sơ đồ Horner:

  \(1\) \(-3m\) \(3m-1\) \(6m\)
\(x=-1\) \(1\) \(-3m-1\) \(6m\) \(0\)

Vậy (*) \(\Leftrightarrow\left(x+1\right)\left(x^2-\left(3m+1\right)x+6m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2-\left(3m+1\right)x+6m=0\end{matrix}\right.\)

Tới đây thì làm tương tự câu b) nhé.