Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm GTNN của
\(P=a^2+b^2+c^2+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Có: \(x^3+y^3=\sqrt{\left(x.x^2+y.y^2\right)^2}\le\sqrt{\left(x^2+y^2\right)\left(x^4+y^4\right)}\)
And: \(\sqrt{x^3y^3}=\left(\sqrt{xy}\right)^6\le\left(\frac{x+y}{2}\right)^6=1\)
\(\Rightarrow\)\(x^3y^3\left(x^3+y^3\right)\le\sqrt{x^3y^3}\sqrt{x^3y^3\left(x^2+y^2\right)\left(x^4+y^4\right)}=\sqrt{xy\left(x^2+y^2\right).x^2y^2\left(x^4+y^4\right)}\)
Theo bài 1 thì \(xy\left(x^2+y^2\right)\le2\) do đó theo cách đặt \(x^2=a;y^2=b\) ta cũng có: \(x^2y^2\left(x^4+y^4\right)=ab\left(a^2+b^2\right)\le2\)
Do đó: \(x^3y^3\left(x^3+y^3\right)\le\sqrt{2.2}=2\) ( đpcm )
\(VT=\frac{x^4}{x^4+3xyzt}+\frac{y^4}{y^4+3xyzt}+\frac{z^4}{z^4+3xyzt}\ge\frac{\left(x^2+y^2+z^2+t^2\right)^2}{x^4+y^4+z^4+t^4+12xyzt}\)
Có: \(4abcd=4\sqrt{a^2b^2.c^2d^2}\le2\left(a^2b^2+c^2d^2\right)\)
Tương tự, ta cũng có:
\(4abcd\le2\left(a^2c^2+b^2d^2\right)\)
\(4abcd\le2\left(d^2a^2+b^2c^2\right)\)
\(\Rightarrow\)\(VT\ge\frac{\left(x^2+y^2+z^2+t^2\right)^2}{x^4+y^4+z^4+t^4+2\left(xy+yz+zt+tx+yz+zt\right)}=1\) ( đpcm )
a/\(\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}\)
\(=2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}=-13\sqrt{3}\)
b/ \(2\sqrt{3}\left(\sqrt{27}+2\sqrt{48}-\sqrt{75}\right)\)
\(=2\sqrt{3}\left(3\sqrt{3}+8\sqrt{3}-5\sqrt{3}\right)\)
\(=2\sqrt{3}\cdot6\sqrt{3}=2\cdot6\cdot3=36\)
c/ \(\left(1+\sqrt{3}-\sqrt{2}\right)\left(1+\sqrt{3}+\sqrt{2}\right)\)
\(=\left(1+\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2\)
\(=1+2\sqrt{3}+3-2\)
\(=2+2\sqrt{3}\)
d/ \(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)
\(=\sqrt{13-4\sqrt{10}}-\sqrt{53+4\sqrt{90}}\)
\(=\sqrt{8-4\sqrt{10}+5}-\sqrt{45+12\sqrt{10}+8}\)
\(=\sqrt{\left(2\sqrt{2}\right)^2-2\cdot2\sqrt{2\cdot5}+\left(\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{5}\right)^2+2\cdot3\cdot2\sqrt{5\cdot2}+\left(2\sqrt{2}\right)^2}\)
\(=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{5}+2\sqrt{2}\right)^2}\)
\(=2\sqrt{2}-\sqrt{5}-3\sqrt{5}-2\sqrt{2}\)
\(=-4\sqrt{5}\)
\(9-12x+4x^2>0\)
\(\Rightarrow\left(2-2x\right)^2>0\)
\(\Rightarrow2-2x>0\)
\(\Rightarrow-2x>-2\)
\(\Rightarrow x< 1\)
Vậy để A có nghĩa thì \(x< 1\)
B) \(\sqrt{x+2\sqrt{x-1}}\ne0\)
\(x+2\sqrt{x-1}>0\)
\(\Rightarrow x-1+2\sqrt{x-1}+1>0\)
\(\Rightarrow\left(\sqrt{x-1}+1\right)^2>0\)
\(\sqrt{x-1}\ge0\Rightarrow x\ge1\)\(\)
Vậy \(x\ge1\)thì B có nghĩa
C) \(\sqrt{3x-2}.\sqrt{x-1}\ge0\)
\(\orbr{\begin{cases}3x-2\ge0\\x-1\ge0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ge\frac{2}{3}\\x\ge1\end{cases}}\)
Vậy \(x\ge1\)thì C có nghĩa
a) \(\frac{1}{\sqrt{9-12x+4x^2}}=\frac{1}{\sqrt{\left(2x-3\right)^2}}=\frac{1}{2x-3}\)
để căn thức A có nghĩa \(\Rightarrow2x-3\ne0\Leftrightarrow x\ne\frac{3}{2}\)
b)\(\frac{1}{\sqrt{x+2\sqrt{x}+1}}=\frac{1}{\sqrt{\left(\sqrt{x}+1\right)^2}}=\frac{1}{\sqrt{x}+1}\)
để căn thức B có nghĩa => \(\sqrt{x}+1\ne0\) và \(x\ge0\) hay \(\sqrt{x}+1>1\Leftrightarrow x=0\)
Vậy..........
nhìn mà nhác giải vl :v
a) \(\sqrt{3x^2-2x+1}+4x=\sqrt{3x^2+2x}+1\)
<=> \(\sqrt{3x^2-2x+1}=\sqrt{3x^2+2x}+1-4x\)
<=> \(\left(\sqrt{3x^2-2x+1}\right)^2=\left(\sqrt{3x^2+2x}+1-4x\right)^2\)
<=> \(3x^2-2x+1=19x^2-8\sqrt{3x^2+2x}.x-6x+2\sqrt{3x^2+2x}+1\)
<=> \(-16x^2+8\sqrt{3x^2+2x}.x+4x-2\sqrt{3x^2+2x}=0\)
<=> \(-2\left(4x-1\right)\left(2x-\sqrt{3x^2+2x}\right)=0\)
<=> \(\hept{\begin{cases}x=\frac{1}{4}\\x=0\\x=2\end{cases}}\) <=> \(\orbr{\begin{cases}x=\frac{1}{4}\\x=0\end{cases}}\) (vì k có ngoặc vuông 3 nên mình dùng tạm ngoặc nhọn, thông cảm)
<=> \(\orbr{\begin{cases}x=\frac{1}{4}\\x=2\end{cases}}\)
b) \(\sqrt{x^2+x-2}+x^2=\sqrt{2\left(x-1\right)}+1\)
<=> \(\sqrt{x^2+x-2}=\sqrt{2\left(x-1\right)}+1-x^2\)
<=> \(\left(\sqrt{x^2+x-2}\right)^2=\left[\sqrt{2\left(x-1\right)}+1-x^2\right]^2\)
<=> \(x^2+x-2=x^4-2\sqrt{2}.x^2.\sqrt{x-1}-2x^2+2x+2\sqrt{2}.\sqrt{x-2}-1\)
<=> \(x^4-2\sqrt{2}.x^2.\sqrt{x-1}-2x^2+2x+2\sqrt{2}.\sqrt{x-1}-1=x^2+x-2\)
<=> \(-2\sqrt{2}.x^2.\sqrt{x-1}+2\sqrt{2}.\sqrt{x-1}-1=-x^4+3x^2-x-2\)
<=> \(-2\sqrt{2}.x^2.\sqrt{x-1}+2\sqrt{2}.\sqrt{x-1}=-x^4+3x^2-x-1\)
<=> \(-2\sqrt{2}.\sqrt{x-1}.\left(x^2+1\right)=-x^4+3x^2-x-1\)
<=> \(\left[-2\sqrt{2}.\sqrt{x-1}\left(x^2+1\right)\right]^2=\left(-x^4+3x^2-x-1\right)^2\)
<=> \(8x^5-8x^4-16x^3+16x^2+8x-8=x^8-6x^6+2x^5+11x^4-6x^3-5x^2+2x+1\)
<=> x = 1
d) mình làm tắt cho nhanh
d) \(\left(\sqrt{4+x}-1\right)\left(\sqrt{1-x}+1\right)=2x\)
<=> \(\sqrt{4+x}.\sqrt{x-1}+\sqrt{4+x}-\sqrt{x-1}-1=2x\)
<=> \(\sqrt{4+x}.\sqrt{1-x}+\sqrt{4+x}-\sqrt{1-x}=2x+1\)
<=> \(\sqrt{4+x}.\sqrt{x-1}+\sqrt{4+x}=2x+1+\sqrt{x-1}\)
<=> \(\left(\sqrt{4+x}.\sqrt{1-x}+\sqrt{4+x}\right)^2=\left(2x+1+\sqrt{1-x}\right)^2\)
<=> \(2\sqrt{-x+1}.\left(x+4\right)=5x^2+4x\sqrt{-x+1}+5x+2\sqrt{-x+1}-6\)
<=> \(\frac{2\sqrt{-x+1}.\left(x+4\right)}{2\left(x+4\right)}=\frac{5x^2}{2\left(x+4\right)}+\frac{4x\sqrt{-x+1}}{2\left(x+4\right)}+\frac{5x}{2\left(x+4\right)}+\frac{2\sqrt{-2x+1}}{2\left(x+4\right)}-\frac{6}{2\left(x+4\right)}\)
<=> \(\sqrt{-x+1}=\frac{5x^2+4x\sqrt{-x+1}+5x+2\sqrt{-x+1}-6}{2\left(4+x\right)}\)
<=> \(2\sqrt{-x+1}.\left(4+x\right)=5x^2+4x\sqrt{-x+1}+5x+2\sqrt{-x+1}-6\)
<=> \(-2x\sqrt{-x+1}+6\sqrt{-x+1}=5x^2+5x-6\)
<=> \(\frac{2\sqrt{-x+1}.\left(-x+3\right)}{2\left(-x+3\right)}=\frac{5x^2}{2\left(-x+3\right)}+\frac{5x}{2\left(-x+3\right)}-\frac{6}{2\left(-x+3\right)}\)
<=> \(\sqrt{-x+1}=\frac{5x^2+5x-6}{2\left(x-3\right)}\)
<=> \(\left(\sqrt{-x+1}\right)^2=\left[\frac{5x^2+5x-6}{2\left(3-x\right)}\right]^2\)
<=> \(-x+1=\frac{25x^4+50x^3-35x^2-60x+36}{36-24+4x}\)
<=> \(\hept{\begin{cases}x=0\\x=\frac{21}{25}\\x=-3\end{cases}}\)=> x = 21/25 (lý do dùng ngoặc nhọn như lý do mình ghi ở trên =))) )
=> x = 21/25
Cần các cao nhân giải khác phương pháp SS
Không làm theo cách đánh giá 3(a2b+b2c+c2a)\(\le\)(a+b+c)(a2+b2+c2)=3(a2+b2+c2)
Ai làm được xin cảm ơn trước
#)Giải :
Ta có : \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(=a^3+b^3+c^3+a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)
Áp dụng BĐT Cauchy :
\(\hept{\begin{cases}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{cases}}\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{ab+bc+ca}{a^2+b^2+c^2}\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{9-\left(a^2+b^2+c^2\right)}{2\left(a^2+b^2+c^2\right)}\)
Đặt \(t=a^2+b^2+c^2\Rightarrow t\ge3\)
\(\Rightarrow P\ge t+\frac{9-t}{2t}=\frac{t}{2}+\frac{9}{2t}+\frac{t}{2}-\frac{1}{2}\ge3+\frac{3}{2}-\frac{1}{2}=4\)
\(\Rightarrow P\ge4\Rightarrow P_{min}=4\)
Dấu ''='' xảy ra khi a = b = c = 1