Câu 1. Chứng minh √7 là số vô tỉ.Câu 2.a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.Câu 4.a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: b) Cho a, b, c > 0. Chứng minh rằng: c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.Câu...
Đọc tiếp
Câu 1. Chứng minh √7 là số vô tỉ.
Câu 2.
a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)
b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)
Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.
Câu 4.
a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:
b) Cho a, b, c > 0. Chứng minh rằng:
c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.
Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.
Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|
Câu 9.
a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
Câu 10. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2)
b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
a) Chứng minh tích BD.CEBD.CE không đổi.
Xét hai tam giác: ΔBOD∆BOD và ΔCEO∆CEO, ta có: ˆB=ˆC=600B^=C^=600 (gt) (1)
Ta có ˆDOCDOC^ là góc ngoài của ΔBDO∆BDO nên: ˆDOC=ˆB+ˆD1DOC^=B^+D^1
hay ˆO1+ˆO2=ˆB+ˆD1⇔600+ˆO2=600+ˆD1O1^+O2^=B^+D1^⇔600+O2^=600+D1^
⇔ˆO2=ˆD1(2)⇔O2^=D1^(2)
Từ (1) và (2) ⇒ΔBOD⇒∆BOD đồng dạng ΔCEO∆CEO (g.g)
⇒BDBO=COCE⇒BD.CE=BO.CO⇒BDBO=COCE⇒BD.CE=BO.CO
hay BD.CE=BC2.BC2=BC24BD.CE=BC2.BC2=BC24 (không đổi)
Vậy BD.CE=BC24BD.CE=BC24 không đổi
b) Chứng minh ΔBODΔBOD đồng dạng ΔOEDΔOED
Từ câu (a) ta có: ΔBOD∆BOD đồng dạng ΔCEO∆CEO
⇒ODOE=BDOC=BDOB⇒ODOE=BDOC=BDOB (do OC=OBOC=OB)
Mà ˆB=ˆDOE=600B^=DOE^=600
Vậy ΔBODΔBOD đồng dạng ΔOEDΔOED (c.g.c) ⇒ˆBDO=ˆODE⇒BDO^=ODE^
hay DODO là tia phân giác của góc BDEBDE
c) Vẽ OK⊥DEOK⊥DE và gọi II là tiếp điểm của (O)(O) với ABAB, khi đó OI⊥ABOI⊥AB. Xét hai tam giác vuông: IDOIDO và KDOKDO, ta có:
DODO chung
ˆD1=ˆD2D1^=D2^ (chứng minh trên)
Vậy ΔIDOΔIDO = ΔKDOΔKDO⇒OI=OK⇒OI=OK
Điều này chứng tỏ rằng OKOK là bán kính của (O)(O) và OK⊥DEOK⊥DE nên KK là tiếp điểm của DEDE với (O)(O)hay DEDE tiếp xúc với đường tròn (O)