K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2022

7759526599

15 tháng 3 2022

ULTR.Bài này dễ muốn chết mà cx hỏi.

Sửa đề : Cho hpt \(\hept{\begin{cases}mx+ny=6\\3mx+2ny=10\end{cases}}\)

a, Thay m = 2 , n = 3 vào hệ pt ta được :

\(\hept{\begin{cases}2x+3y=6\\6x+6y=10\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}6x+9y=18\\6x+6y=10\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6x+9y=18\\3y=8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{8}{3}\end{cases}}\)

b, Thay x = 1 , y = 3 vào hệ pt ta được :

\(\hept{\begin{cases}m+3n=6\\3m+6n=10\end{cases}}\Leftrightarrow\hept{\begin{cases}3m+9n=18\\3m+6n=10\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3m+9n=18\\3n=8\end{cases}}\Leftrightarrow\hept{\begin{cases}m=-2\\n=\frac{8}{3}\end{cases}}\)

\(\hept{\begin{cases}x;y>0\\x+y\le2y\end{cases}}\Rightarrow x+\frac{4}{y}\le2\)(cái này mk nghĩ bạn đưa câu hỏi lên sẽ tự hiểu đc nhé)

ta xét: \(Q=\frac{1}{P}=\frac{x^2+2y^2}{xy}=\frac{x}{y}+\frac{2y}{x}\)

\(2\ge x+\frac{4}{y}\ge2.\sqrt{\frac{4x}{y}}\Leftrightarrow\frac{x}{y}\le\frac{1}{4}\Leftrightarrow\frac{y}{x}\ge4\)

ta đặt  \(t=\frac{b}{a}\ge4\Rightarrow Q=\frac{1}{P}=\frac{1}{t}+t=\left(\frac{1}{t}+\frac{t}{16}\right)+\frac{15}{16}t\ge2\sqrt{\frac{1}{t}.\frac{t}{16}}+\frac{15}{16}.4=\frac{17}{4}\)

\(\Rightarrow P\le\frac{4}{17}\) tự kết luận ạ

Lấy phương trình 2 trừ phương trình 1 ta được 

\(z^2-x^2+yz-xy=3\)

\(\left(z-x\right)\left(z+x\right)+y\left(z-x\right)=3\)

\(\left(z-x\right)\left(x+y+z\right)=3\)      ( 1 )

Tương tự lấy phương trình 3 trừ phương trình 2 ta được

\(\left(x-y\right)\left(x+y+z\right)=3\)      ( 2 )

Lấy ( 1 ) - ( 2 )

\(\left(x+y+z\right)\left(z+y-2x\right)=0\)

Mà \(x+y+z\ne0\)( Do từ ( 1 ) ta thấy vô lý ) nên \(2x=y+z\)

Từ phương trình ban đầu ta có :

\(0=4\left(x^2+xy+y^2\right)-\left(y^2+yz+z^2\right)=4x^2+4xy+3y^2-yz-z^2\)

Thay \(x=\frac{y+z}{2}\)vào ta được:

\(\left(y+z\right)^2+2y\left(y+z\right)+3y^2-yz-z^2=0\)

\(6y^2+3yz=0\Rightarrow\hept{\begin{cases}y=0\\z=-2y\end{cases}}\)

Với \(y=0\)\(\Rightarrow x^2=1\)\(z^2=4\)\(xz=2\)= > x = 1; z = 2 hoặc x = -1; z = -2

Với \(z=-2y\)thay vào phương trình 2 ta có \(3y^2=4\Rightarrow\hept{\begin{cases}y=\frac{2}{\sqrt{3}}\\y=\frac{-2}{\sqrt{3}}\end{cases}}\)

+ Với \(y=\frac{2}{\sqrt{3}}\Rightarrow z=-\frac{4}{\sqrt{3}}\Rightarrow x=-\frac{1}{\sqrt{3}}\)

+ Với \(y=\frac{-2}{\sqrt{3}}\Rightarrow z=\frac{4}{\sqrt{3}}\Rightarrow x=\frac{1}{\sqrt{3}}\)

14 tháng 3 2022

Gọi số sản phẩm tổ I và tổ II được giao theo ké hoạch lần lượt là:

x,y(x,y∈N*;x,y<600)

Vì theo kế hoạch hai tổ được giao sản xuất 600 sản phẩm nên ta có:

x+y=600(1)

Vì tổ I đã sản xuất vượt mức kế hoạch 18% nên số sản phẩm vượt mức của tổ I là: 0,18x

Vì tổ II đã sản xuất vượt mức kế hoạch 21% nên số sản phẩm vượt mức của tổ II là: 0,21y

Vì 2 tổ vượt mức 120 sản phẩm nên ta có phương trình:

0,18x+0,2y=120(2)

Từ (1) và (2) ta có hệ   

x+y=600

0,18x+0,21y=120

=>0,21x+0,21y=126;0,18x+0,21y=120

=>0,03x=6=>x=200

=>y=400

Vậy theo kế hoặc tổ I được giao 200sản phầm, tổ II được giao 400sản phẩm.

\(\hept{\begin{cases}x-y+xy=3\\x^2+y^2+3x^2y-3xy^2=11\left(1\right)\end{cases}}\)

\(\left(1\right)\Rightarrow x^2+y^2+3x^2y-3xy^2=11\)

\(\Leftrightarrow x^2+y^2-2xy+2xy+3x^2y-3xy^2=11\)

\(\Leftrightarrow\left(x-y\right)^2+2xy+3xy\left(x-y\right)=11\)

\(\Leftrightarrow\left(x-y\right)^2+xy\left(x-y\right)+2xy+2xy\left(x-y\right)=11\)

\(\Leftrightarrow\left(x-y\right)\left(x-y+xy\right)+2xy\left(x-y+1\right)=11\)

\(\Leftrightarrow3.\left(x-y\right)+2xy\left(x-y+1\right)=11\)\(\left(2\right)\)

Đặt \(S=x-y\)\(P=xy\) 

Thay S,P vào hệ phương trình ta được :

\(\hept{\begin{cases}S+P=3\\3.S+2.P.\left(S+1\right)=11\end{cases}}\Leftrightarrow\hept{\begin{cases}S=3-P\\3.\left(3-P\right)+2.P\left(3-P+1\right)=11\end{cases}}\)

\(\hept{\begin{cases}S=3-P\\9-3P+8P-2P^2=11\left(3\right)\end{cases}}\)

Giải ( 3 ) \(2P^2-5P+2=0\)

 \(\Leftrightarrow2P^2-4P-P+2=0\)

\(\Leftrightarrow2P\left(P-2\right)-\left(P-2\right)=0\)

\(\Leftrightarrow\left(2P-1\right)\left(P-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}P=\frac{1}{2}\Rightarrow S=\frac{5}{2}\\P=2\Rightarrow S=1\end{cases}}\)

+ P = 2 , S = 1 \(\Rightarrow\hept{\begin{cases}x-y=1\\xy=2\end{cases}}\)< = > \(\hept{\begin{cases}x=1+y\\y\left(1+y\right)=2\end{cases}}\)< = > x = 1 + y hoặc y = 1 và y = -2

<= > , y = 1 => x = 2

       , y = -2 => x = -1

\(P=\frac{1}{2},S=\frac{5}{2}\)

\(\Rightarrow\hept{\begin{cases}x-y=\frac{5}{2}\\xy=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}+y\\\left(\frac{5}{2}+y\right)y=\frac{1}{2}\end{cases}}\) < = > x = 5/2 + y hoặc \(y=\frac{\sqrt{33}-5}{4}\)và \(y=\frac{-\sqrt{33}-5}{4}\)

< = > \(x=\frac{\sqrt{33}+5}{4}\) , \(y=\frac{\sqrt{33}-5}{4}\)

       \(x=\frac{5-\sqrt{33}}{4}\)\(y=\frac{-\sqrt{33}-5}{4}\)

             

NV
15 tháng 3 2022

\(\Leftrightarrow\left\{{}\begin{matrix}x-y+xy=3\\\left(x-y\right)^2+2xy+3xy\left(x-y\right)=11\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x-y=u\\xy=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}u+v=3\\u^2+2v+3uv=11\end{matrix}\right.\)

\(\Rightarrow u^2+2\left(3-u\right)+3u\left(3-u\right)=11\)

\(\Leftrightarrow2u^2-7u+5=0\Rightarrow\left[{}\begin{matrix}u=1\Rightarrow v=2\\u=\dfrac{5}{2}\Rightarrow v=\dfrac{1}{2}\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}u=1\\v=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-y=1\\xy=2\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}y=x-1\\xy=2\end{matrix}\right.\) \(\Rightarrow x\left(x-1\right)=2\Rightarrow x^2-x-2=0\Rightarrow\left[{}\begin{matrix}x=-1\Rightarrow y=-2\\x=2\Rightarrow y=1\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}u=\dfrac{5}{2}\\v=\dfrac{1}{2}\end{matrix}\right.\) ... tương tự

14 tháng 3 2022

a) Xét pt \(x^2-\left(2m-3\right)x+m^2-3m=0\)

Ta có \(\Delta=\left[-\left(2m-3\right)^2\right]-4.1\left(m^2-3m\right)\)\(=4m^2-12m+9-4m^2+12m\)\(=9>0\)

Vậy pt đã cho luôn có 2 nghiệm phân biệt với mọi m.

Câu b mình nhìn không rõ đề, bạn sửa lại nhé.

14 tháng 3 2022

ĐK \(x_2\ge0;\)

Phương trình hoành độ giao điểm 

x2 = mx + m + 1

\(\Leftrightarrow x^2-mx-m-1=0\)

Có \(\Delta=m^2+4\left(m+1\right)=\left(m+2\right)^2\ge0\)

\(\Rightarrow\)Phương trình có nghiệm với mọi m

Phương trình 2 nghiệm \(\hept{\begin{cases}x_1=\frac{m-\left|m+2\right|}{2}\\x_2=\frac{m+\left|m+2\right|}{2}\end{cases}}\)

Khi m + 2 < 0 thì x1 = m + 1 ; x2 = -1 (loại)

khi m + 2 \(\ge0\)thì x1 = -1 ; x2 = m + 1

\(\Rightarrow x_1=-1;x_2=m+1\)nghiệm phương trình 

Khi đó ta có -1 + m - m = \(\sqrt{m+1}-\sqrt[3]{8}\)

\(\Leftrightarrow\sqrt{m+1}=1\Leftrightarrow m=0\)(tm)