K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

\(3x^2+6y^2+2z^2+3y^2z^2-18x=6\)

\(\Leftrightarrow3\left(x-3\right)^2+6y^2+2z^2+3y^2z^2=33\)

\(\Rightarrow3\left(x-3\right)^2\le33\)

\(\Leftrightarrow\left(x-3\right)^2\le11\)

\(\Leftrightarrow\left(x-3\right)^2=\left\{0;1;4;9\right\}\)

Thế lần lược vô giải tiếp sẽ ra

17 tháng 7 2018

Áp dụng với 6y^2 thì còn ngắn hơn nữa

17 tháng 7 2018

M B C D A H K

Kẻ BH và DK cùng vuông góc với AI.

Ta có  \(\widehat{HIB}=\widehat{KAD}\)  (so le trong) nên \(\Delta HIB\sim\Delta KAD\left(g-g\right)\)

\(\Rightarrow\frac{BH}{DK}=\frac{BI}{AD}=\frac{BI}{BC}=\frac{1}{2}\)

Lại có: \(S_{ABM}=\frac{1}{2}.m.BH\Rightarrow BH=\frac{2b}{m}\)

Tương tự \(DK=\frac{2d}{m}\)

Suy ra d = 2b hay \(d^2=4b^2.\).

Gọi độ dài cạnh của hình vuông ABCD là a thì BI = a/2.

Xét tam giác vuông ABI, đường cao BH ta có: \(\frac{1}{BH^2}=\frac{1}{AB^2}+\frac{1}{BI^2}\Rightarrow\frac{1}{\left(\frac{2b}{m}\right)^2}=\frac{1}{a^2}+\frac{1}{\left(\frac{a}{2}\right)^2}\)

\(\Leftrightarrow\frac{m^2}{4b^2}=\frac{5}{a^2}\Rightarrow a^2=\frac{4.5b^2}{m^2}=\frac{4}{m^2}\left(4b^2+b^2\right)=\frac{4}{m^2}\left(d^2+b^2\right)\)

Vậy \(S_{ABCD}=\frac{4}{m^2}\left(d^2+b^2\right).\)

16 tháng 7 2018

\(x^2+y^2=x+y+8\)

\(\Leftrightarrow4x^2-4x+1+4y^2-4y+1=34\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(2y-1\right)^2=34\)

Đơn giản rồi nhé

26 tháng 5 2019

Em có cách này tuy nhiên không chắc.

Viết lại phương trình với x là ẩn:

\(x^2-x+\left(y^2-y-8\right)=0\)  (1)

Để phương trình (1) có nghiệm thì \(\Delta=\left(-1\right)^2-4\left(y^2-y-8\right)\ge0\)

\(\Leftrightarrow-4y^2+4y+33\ge0\Leftrightarrow\frac{1-\sqrt{34}}{2}\le y\le\frac{1+\sqrt{34}}{2}\)

Mà \(y\inℕ\Rightarrow0\le y\le3\)

....

18 tháng 7 2019

Từ A dựng đường cao AH, M dựng đường cao MD ( H, D thuộc BC ) 

\(\left(S_{MAB};S_{MBC};S_{MAC}\right)\rightarrow\left(S_1;S_2;S_3\right)\)

\(\Delta HAA_1\) có \(AH//MD\left(\perp BC\right)\) áp dụng Ta-let \(\Rightarrow\)\(\frac{AA_1}{MA_1}=\frac{AH}{MD}=\frac{\frac{1}{2}AH.BC}{\frac{1}{2}MD.BC}=\frac{S_{ABC}}{S_2}\)

\(\Rightarrow\)\(\frac{AA_1}{MA_1}-1=\frac{MA}{MA_1}=\frac{S_{ABC}}{S_2}-1=\frac{S_1+S_3}{S_2}\)

Tương tự( dựng các đường cao hạ từ B, M và C, M ) ta cũng có: \(\frac{MB}{MB_1}=\frac{S_1+S_2}{S_3};\frac{MC}{MC_3}=\frac{S_2+S_3}{S_1}\)

Do đó: \(P=\frac{MA}{MA_1}.\frac{MB}{MB_1}.\frac{MC}{MC_1}=\frac{\left(S_1+S_2\right)\left(S_2+S_3\right)\left(S_3+S_1\right)}{S_1S_2S_3}\)

\(\ge\frac{2\sqrt{S_1S_2}.2\sqrt{S_2S_3}.2\sqrt{S_3S_1}}{S_1S_2S_3}=\frac{8\sqrt{\left(S_1S_2S_3\right)^2}}{S_1S_2S_3}=8\)

Dấu "=" xảy ra \(\Leftrightarrow\) tam giác ABC là tam giác đều và có 3 đường trung trực đồng quy tại M

12 tháng 6 2019

hỏi khó vậy bn