K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

a) \(\Delta'=\left(m+1\right)^2-\left(m^2-3m\right)=5m+1\)

Để phương trình có nghiệm duy nhất thì \(\Delta'=0\Leftrightarrow5m+1=0\Leftrightarrow m=-\frac{1}{5}.\)

b) Phương trình có 2 nghiệm phân biệt thì \(5m+1>0\Leftrightarrow m>-\frac{1}{5}.\)

Theo hệ thức Viet ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=m^2-3m\end{cases}}\)

Ta có: \(\left(x_1-2\right)\left(x_2-2\right)=x_1^2+x_2^2\Leftrightarrow x_1x_2-2\left(x_1+x_2\right)+4=\left(x_1+x_2\right)^2-2x_1x_2\)

\(\Leftrightarrow m^2-3m-4\left(m+1\right)+4=4\left(m+1\right)^2-2m^2+6m\)

\(\Leftrightarrow m^2-7m=2m^2+14m+4\)

\(\Leftrightarrow m^2+21m+4=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=\frac{-21+\sqrt{17}}{2}\left(tm\right)\\m=\frac{-21-\sqrt{17}}{2}\left(l\right)\end{cases}}\)

Vậy \(m=\frac{-21+\sqrt{17}}{2}\)

21 tháng 7 2018

\(\Delta\)= b2-4ac hình như thiếu số 4

19 tháng 7 2018

Ta có: 

Với \(x=0\)\(y^2=3\Rightarrow P=3\)

Với  \(y=0\Rightarrow x^2=3\Rightarrow P=3\)

Với \(x\ne0,y\ne0\) thì ta có: \(\frac{P}{3}=\frac{x^2+y^2}{x^2-xy+y^2}=\frac{\frac{x^2+y^2}{xy}}{\frac{x^2-xy+y^2}{xy}}=\frac{\frac{x}{y}+\frac{y}{x}}{\frac{x}{y}+\frac{y}{x}-1}\)

Đặt \(\frac{x}{y}=t\Rightarrow\frac{P}{3}=\frac{t+\frac{1}{t}}{t+\frac{1}{t}-1}=\frac{t^2+1}{t^2-t+1}\)

\(\Rightarrow Pt^2-Pt+P=3t^2+3\)

\(\Rightarrow\left(P-3\right)t^2-Pt+\left(P-3\right)=0\)

\(\Delta=P^2-4\left(P-3\right)^2=-3P^2+24P-36\)

Để \(\Delta\ge0\Rightarrow-3P^2+24P-36\ge0\Leftrightarrow2\le P\le6.\)

Khi P = 2 thì \(-t^2-2t-1=0\Leftrightarrow t=-1\Rightarrow\frac{x}{y}=-1\)

Vậy thì \(x^2+x^2+x^2=3\Rightarrow\orbr{\begin{cases}x=1,y=-1\\x=-1,y=1\end{cases}}\)

Vậy GTNN của P là 2 khi x = 1, y = -1 hoặc x = -1, y = 1

18 tháng 7 2018

Ta có : \(\frac{a^3}{1+b}+\frac{1+b}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{a^3\left(1+b\right)}{8\left(1+b\right)}}=\frac{3}{2}a\)

\(\frac{b^3}{1+a}+\frac{1+a}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{b^3}{1+a}.\frac{1+a}{4}.\frac{1}{2}}=\frac{3}{2}b\)

Cộng các vế tương ứng lại ta được :

\(\frac{a^3}{1+b}+\frac{b^3}{1+a}+\frac{1}{4}\left(a+b\right)+\frac{3}{2}\ge\frac{3}{2}\left(a+b\right)\)

\(\Leftrightarrow\frac{a^3}{1+b}+\frac{b^3}{1+a}\ge\frac{5}{4}\left(a+b\right)-\frac{3}{2}\ge\frac{5}{4}.2\sqrt{ab}-\frac{3}{2}=1\)

Do đó \(P\ge1\)

Dấu \("="\) xảy ra \(\Leftrightarrow a=b=1\)

19 tháng 7 2018

A B C G M N E F d I

Qua 2 điểm B và C kẻ đường thẳng song song với đường thẳng d cắt tia AG lần lượt tại E và F

Gọi AI là trung tuyến của \(\Delta\)ABC

Theo ĐL Thales ta có các tỉ số: \(\frac{AB}{AM}=\frac{AE}{AG};\frac{AC}{AN}=\frac{AF}{AG}\)

\(\Rightarrow\frac{AB}{AM}+\frac{AC}{AN}=\frac{AE+AF}{AG}=\frac{2AE+IE+IF}{AG}\)

Dễ thấy \(\Delta\)BEI=\(\Delta\)CFI (g.c.g) => IE = IF (2 cạnh tương ứng) => IE + IF = 2.IE

\(\Rightarrow\frac{AB}{AM}+\frac{AC}{AN}=\frac{2AE+2IE}{AG}=\frac{2AI}{AG}=\frac{3AG}{AG}=3\)

\(\Leftrightarrow\left(\frac{AB}{AM}+\frac{AC}{AN}\right)^2=9\ge4.\frac{AB.AC}{AM.AN}\)(BĐT Cauchy)

\(\Leftrightarrow\frac{AB.AC}{AM.AN}\le\frac{9}{4}\Leftrightarrow AM.AN\ge\frac{4.AB.AC}{9}\)

\(\Rightarrow S_{AMN}\ge\frac{4}{9}.S_{ABC}\Leftrightarrow\frac{S_{ABC}}{S_{AMN}}\le\frac{9}{4}\)(đpcm).

Đẳng thức xảy ra <=> \(\frac{AB}{AM}=\frac{AC}{AN}\)<=> MN // BC <=> d // BC.

8 tháng 4 2020

1

toánlop5Nhãn
19 tháng 7 2018

a) ĐKXĐ: \(x\ne9\)

\(P=\frac{x\sqrt{x}+5\sqrt{x}-12-2\left(\sqrt{x}-3\right)^2-\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{x\sqrt{x}+5\sqrt{x}-12-2x+12\sqrt{x}-18-x-5\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{x\sqrt{x}-3x+12\sqrt{x}-36}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{\left(\sqrt{x}-3\right)\left(x+12\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{x+12}{\sqrt{x}+2}\)

b) Ta có: \(P=\frac{x+12}{\sqrt{x}+2}=\frac{x-4+16}{\sqrt{x}+2}=\sqrt{x}-2+\frac{16}{\sqrt{x}+2}\)

\(=\left(\sqrt{x}+2\right)+\frac{16}{\sqrt{x}+2}-4\)

\(\ge2\sqrt{\left(\sqrt{x}+2\right).\frac{16}{\sqrt{x}+2}}-4=4\)

P = 4 thì \(\left(\sqrt{x}+2\right)^2=16\Rightarrow\sqrt{x}=2\Rightarrow x=4\)

Vậy GTNN của P là 4 khi x = 4.

17 tháng 7 2018

ĐK: \(x\ge1\)

Ta thấy do \(x\ge1\Rightarrow\sqrt{x}\ge1\)

\(\sqrt{x+\sqrt{x-1}}\ge\sqrt{x}\ge1\)

\(\Rightarrow VT\ge2>1\)

Vậy không có giá trị của x thỏa mãn phương trình trên.

17 tháng 7 2018

\(3\sqrt{x}-1=1\)

\(\Leftrightarrow3\sqrt{x}=2\)(dk \(x\ge0\)

\(\Leftrightarrow\sqrt{x}=\frac{2}{3}\Leftrightarrow x=\frac{4}{9}\)

\(\)

17 tháng 7 2018

\(3x^2+6y^2+2z^2+3y^2z^2-18x=6\)

\(\Leftrightarrow3\left(x-3\right)^2+6y^2+2z^2+3y^2z^2=33\)

\(\Rightarrow3\left(x-3\right)^2\le33\)

\(\Leftrightarrow\left(x-3\right)^2\le11\)

\(\Leftrightarrow\left(x-3\right)^2=\left\{0;1;4;9\right\}\)

Thế lần lược vô giải tiếp sẽ ra

17 tháng 7 2018

Áp dụng với 6y^2 thì còn ngắn hơn nữa

17 tháng 7 2018

M B C D A H K

Kẻ BH và DK cùng vuông góc với AI.

Ta có  \(\widehat{HIB}=\widehat{KAD}\)  (so le trong) nên \(\Delta HIB\sim\Delta KAD\left(g-g\right)\)

\(\Rightarrow\frac{BH}{DK}=\frac{BI}{AD}=\frac{BI}{BC}=\frac{1}{2}\)

Lại có: \(S_{ABM}=\frac{1}{2}.m.BH\Rightarrow BH=\frac{2b}{m}\)

Tương tự \(DK=\frac{2d}{m}\)

Suy ra d = 2b hay \(d^2=4b^2.\).

Gọi độ dài cạnh của hình vuông ABCD là a thì BI = a/2.

Xét tam giác vuông ABI, đường cao BH ta có: \(\frac{1}{BH^2}=\frac{1}{AB^2}+\frac{1}{BI^2}\Rightarrow\frac{1}{\left(\frac{2b}{m}\right)^2}=\frac{1}{a^2}+\frac{1}{\left(\frac{a}{2}\right)^2}\)

\(\Leftrightarrow\frac{m^2}{4b^2}=\frac{5}{a^2}\Rightarrow a^2=\frac{4.5b^2}{m^2}=\frac{4}{m^2}\left(4b^2+b^2\right)=\frac{4}{m^2}\left(d^2+b^2\right)\)

Vậy \(S_{ABCD}=\frac{4}{m^2}\left(d^2+b^2\right).\)