cho tam giác abc nhọn có D,E,F lần lượt trên BC,AC,AB sao cho AD,BF,CF đồng quy tại H. Gọi M là giao điểm của BE và DF,N là giao điểm của CF và DE. Biết MD/MF=ED/EF;ND/NE=FD/FE cmr H là trực tâm của tam giác abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đầu tiên ta chứng minh: \(\left(a+b+c\right)\left(x+y+z\right)\le3\left(ax+by+cz\right)\)
\(\Leftrightarrow ay+az+bz+bx+cx+cy\le2\left(ax+by+cz\right)\)
\(\Leftrightarrow a\left(y+z-2x\right)+b\left(z+x-2y\right)+c\left(x+y-2z\right)\le0\)
\(\Leftrightarrow a\left(y+z-2x\right)-b\left[\left(y+z-2x\right)+\left(x+y-2z\right)\right]+c\left(x+y-2z\right)\le0\)
\(\Leftrightarrow\left(a-b\right)\left(y+z-2x\right)+\left(c-b\right)\left(x+y-2z\right)\le0\)
Không mất tính tổng quát, giả sử: \(\hept{\begin{cases}a\ge b\ge c\\x\ge y\ge z\end{cases}}\)
Theo đó: \(\hept{\begin{cases}a-b\ge0\\y+z-2x\le0\end{cases}}\Rightarrow\left(a-b\right)\left(y+z-2x\right)\le0\)
Tương tự \(\left(c-b\right)\left(x+y-2z\right)\le0\).
Ta có đpcm.
Áp dụng vào bài toán:
Đặt \(a^2+b^2=x;b^2+c^2=y;c^2+a^2=z;a+b=p;b+c=q;c+a=o\), ta có:
Đpcm \(\Leftrightarrow\frac{x}{p}+\frac{y}{q}+\frac{z}{o}\le\frac{3\cdot\frac{1}{2}\left(x+y+z\right)}{\frac{1}{2}\left(p+q+o\right)}=\frac{3\left(x+y+z\right)}{p+q+o}\)
\(\Leftrightarrow\left(\frac{x}{p}+\frac{y}{q}+\frac{z}{o}\right)\left(p+q+o\right)\le3\left(x+y+z\right)\)[*]
Mà theo bất đẳng thức đã chứng minh:
\(VT\left[+\right]\le3\left(\frac{x}{p}\cdot p+\frac{y}{q}\cdot q+\frac{z}{o}\cdot o\right)=3\left(x+y+z\right)=VP\)
Ta có đpcm
Dấu "=" xảy ra khi a = b = c
Anh làm cách cosi
\(VT^2=\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+2\left(b^2+a^2+c^2\right)\)
Ta có \(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}\ge2b^2\)
\(\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\ge2c^2\)=> \(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\ge a^2+b^2+c^2\)
\(\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}\ge2c^2\)
=> \(VT^2\ge3\left(a^2+b^2+c^2\right)=9\)
=> \(VT\ge3\)
Dấu bằng xảy ra khi a=b=c1
xD
Có: \(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge3\)(1)
\(\Leftrightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+2\left(a^2+b^2+c^2\right)\ge9\)
\(\Leftrightarrow\frac{\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3-3a^2b^2c^2}{a^2b^2c^2}\ge0\)
Đặt \(\hept{\begin{cases}ab=x\\bc=y\\ac=z\end{cases}\left(x,y,z>0\right)}\)
\(\left(1\right)\Leftrightarrow\frac{x^3+y^3+z^3-3xyz}{\left(abc\right)^2}\ge0\)
\(\Leftrightarrow\frac{\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]}{\left(abc\right)^2}\ge0\)(đúng)
Vậy ........... dấu = xảy ra khi và chỉ khi x=y=z hay a=b=c=1
Làm đại nha!
Chuyển vế qua ta có bđt tương đương
\(\left(\frac{a^2}{b}-\frac{2a^2}{b+c}\right)+\left(\frac{b^2}{c}-\frac{2b^2}{c+a}\right)+\left(\frac{c^2}{a}-\frac{2c^2}{a+b}\right)\ge0\)
\(\Leftrightarrow\frac{a^2\left(c-b\right)}{b\left(b+c\right)}+\frac{b^2\left(a-c\right)}{c\left(c+a\right)}+\frac{c^2\left(b-a\right)}{a\left(a+b\right)}\ge0\)(1)
Nhiệm vụ là đi CM Bđt trên
Biến (1) thành dạng: \(S_1\left(c-b\right)^2+S_2\left(a-c\right)^2+S_3\left(b-a\right)^2\ge0\)(2)
trong đó: \(\hept{\begin{cases}S_1=\frac{a^2}{b\left(b+c\right)\left(c-b\right)}\\S_2=\frac{b^2}{c\left(c+a\right)\left(a-c\right)}\\S_3=\frac{c^2}{a\left(a+b\right)\left(b-a\right)}\end{cases}}\)
\(\left(2\right)\Leftrightarrow S_1\left(c-b\right)^2-S_2\left[\left(c-b\right)+\left(b-a\right)\right]^2+S_3\left(b-a\right)^2\ge0\)
\(\Leftrightarrow\left(S_1-S_2\right)\left(c-b\right)^2+\left(S_3-S_2\right)\left(b-a\right)^2-2\left(c-b\right)\left(b-a\right)S_2\ge0\)
hay \(\Leftrightarrow\left(S_1-S_2\right)\left(c-b\right)^2+\left(S_3-S_2\right)\left(b-a\right)^2+2\left(c-b\right)\left(b-a\right)\left(-S_2\right)\ge0\)(3)
Tới đây cần chứng minh (3) đúng
Xét: \(S_1-S_2=\frac{a^2}{b\left(b+c\right)\left(c-b\right)}-\frac{b^2}{c\left(c+a\right)\left(a-c\right)}=\frac{a^2}{b\left(b+c\right)\left(c-b\right)}+\frac{b^2}{c\left(c+a\right)\left(c-a\right)}>0\)(do từ gt)
Xét \(S_3-S_2=.....>0\)(tương tự làm nha)
Xét \(-S_2=\frac{b^2}{c\left(a+c\right)\left(c-a\right)}>0\)
Có: \(\hept{\begin{cases}S_1-S_2>0\\S_3-S_2>0\\-S_2>0\end{cases}}\)Suy ra (3) đúng
Suy ra (2) và (1) cũng đúng
Vậy .........
Không biết đúng không
bạn làm nhầm rồi
Đoạn \(\left(2\right)\Leftrightarrow....+S_2\)bạn ghi thành \(\Leftrightarrow...-S_2\)
xD
Có: \(\frac{x^2-z^2}{y+z}+\frac{y^2-x^2}{z+x}+\frac{z^2-y^2}{x+y}\)(1)
\(=\frac{\left(x-z\right)\left(x+z\right)}{y+z}+\frac{\left(y-x\right)\left(x+y\right)}{z+x}+\frac{\left(z-y\right)\left(y+z\right)}{x+y}\)
\(\left(1\right)=S_1\left(x-z\right)^2+S_2\left(y-x\right)^2+S_3\left(z-y\right)^2\)
Trong đó:
\(\hept{\begin{cases}S_1=\frac{x+z}{\left(y+z\right)\left(x-z\right)}\\S_2=\frac{x+y}{\left(z+x\right)\left(y-x\right)}\\S_3=\frac{y+z}{\left(x+y\right)\left(z-y\right)}\end{cases}}\)
Giả sử: \(x\ge y\ge z\)( x,y,z lớn hơn 0)
Có: \(S_1=\frac{x+z}{\left(y+z\right)\left(x-z\right)}\ge0\)
Xét: \(S_1+S_2=\frac{x+z}{\left(y+z\right)\left(x-z\right)}-\frac{x+y}{\left(x+z\right)\left(x-y\right)}=\frac{\left(x+z\right)^2+\left(x+y\right)\left(y+z\right)^2+\left(y+z\right)\left(y-z\right)\left(2x+y+z\right)}{.....}\ge0\)
Xét tiếp \(S_1+S_3\)là xong
Không biết đúng k tại mình hơi yếu
*Nếu được giả sử như bạn Cà Bùi thì bài làm của em như sau,mong mọi người góp ý ạ!
Ta có: \(VT=\frac{x^2-z^2}{y+z}+\frac{y^2-x^2}{z+x}-\frac{x^2-z^2+y^2-x^2}{x+y}\)
\(=\left(x^2-z^2\right)\left(\frac{x+y-y-z}{\left(x+y\right)\left(y+z\right)}\right)+\left(y^2-x^2\right)\left(\frac{x+y-z-x}{\left(z+x\right)\left(x+y\right)}\right)\) (nhóm các số thích hợp + quy đồng)
\(=\frac{\left(x+z\right)\left(x-z\right)^2}{\left(x+y\right)\left(y+z\right)}+\frac{\left(y-x\right)\left(y-z\right)}{\left(z+x\right)}\)
Do a, b, c có tính chất hoán vị, nên ta giả sử y là số lớn nhất. Khi đó vế trái không âm hay ta có đpcm.
Phan Văn An:đây là câu hỏi mà bạn.bạn bt thì ans giúp mik với !
Làm đại luôn mặc dù chưa xong xD. Có sai sót gì cho xin lỗi nha!
Đặt: \(M=\frac{a^2+bc}{\left(b+c\right)^2}+\frac{b^2+ca}{\left(c+a\right)^2}+\frac{c^2+ab}{\left(a+b\right)^2}\)
\(M=\frac{\frac{1}{\left(b+c\right)^2}}{\frac{1}{a^2+bc}}+\frac{\frac{1}{\left(c+a\right)^2}}{\frac{1}{b^2+ca}}+\frac{\frac{1}{\left(a+b\right)^2}}{\frac{1}{c^2+ab}}\)
Áp dụng Bđt AM-GM dạng Engel:
\(M\ge\frac{\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)^2}{\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}}\)
Chuẩn hóa: \(a+b+c=3\)
Có: \(A=\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)^2\ge\left(\frac{9}{2\left(a+b+c\right)}\right)^2=\left(\frac{3}{2}\right)^2\)
CM:\(B=\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}\le\frac{3}{2}\)so what ? Tới đây k biết làm.
b) \(x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)
\(=x^3+x^2+x-x^3-x^2-x+5\)
\(=\left(x^2-x^2\right)+\left(x-x\right)+\left(x^3-x^3\right)+5\)
\(=0+0+0+5\)
\(=5\)
Giá trị của biểu thức trên luôn bằng 5 nên nó không phụ thuộc vào giá trị của biến.
a) \(x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
\(=5x^2-3x-x^3+x^2+x^3-6x^2-10+3x\)
\(=\left(5x^2+x^2-6x^2\right)+\left(x^3-x^3\right)+\left(3x-3x\right)-10\)
\(=0+0+0-10\)
\(=-10\)
Giá trị của biểu thức trên luôn bằng -10 nên nó không phụ thuộc vào giá trị của biến (đpcm)
Ví dụ :
\(5^2=\left(\sqrt{16}+1\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}5=\sqrt{16+1}\\5=-\sqrt{16}-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5=5\\5=-5\end{cases}}\)
Ta có
\(\frac{a^2}{a+b^2}=\frac{a^2+ab^2-ab^2}{a+b^2}=a-\frac{ab^2}{a+b^2}\ge a-\frac{b\sqrt{a}}{2}\ge a-\frac{1}{4}b\left(a+1\right)\)
Khi đó
\(A\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}\left(ab+bc+ac\right)\)
Mà \(ab+bc+ac\le\frac{1}{3}\left(a+b+c\right)^2=3\)
=> \(A\ge\frac{9}{4}-\frac{3}{4}=\frac{3}{2}\)( ĐPCM)
Dấu bằng xảy ra khi a=b=c=1
\(a-\frac{ab^2}{a+b^2}\ge a-\frac{b\sqrt{a}}{2}\)
Do \(a+b^2\ge2b\sqrt{a}\)
\(a-\frac{ab^2}{a+b^2}\ge a-\frac{b\sqrt{a}}{2}\ge a-\frac{1}{4}b\left(a+1\right)\)
Do \(\sqrt{a}\le\frac{a+1}{2}\)
Xét bài toán (II): Cho tam giác A'B'C' điểm D' thuộc cạnh BC sao cho \(\frac{A'B'}{A'C'}=\frac{D'B'}{D'C'}\).
Chứng minh: A'D' là phân giác góc A' của tam giác A'B'C'
A' C' D' B' E'
Trên tia đối tia D'A' lấy điểm E' sao cho B'E'=B'A'
=> \(\Delta B'E'A'\)cân tại B'
=> \(\widehat{B'A'D'}=\widehat{B'E'D'}\)(1)
Xét tam giác: A'D'C' và tam giác E'D'B' có: \(\frac{E'B'}{A'C'}=\frac{D'B'}{D'C'}\)và \(\widehat{C'D'A'}=\widehat{B'D'E'}\)
=> Hai tam giác trên đồng dạng
=> \(\widehat{C'A'D'}=\widehat{B'E'D'}\)(2)
Từ (1), (2) => \(\widehat{C'A'D'}=\widehat{B'A'D'}\)=> A'D' là phân giác góc A của tam giác A'B'C'
Quay lại bài toán của bạn:
A B C D E F M N H
Xét tam giác EFD có: M thuộc FD và \(\frac{ED}{EF}=\frac{MD}{MF}\)
theo bài toán (II) đã chứng minh ở trên ta có: EM là phân giác góc \(\widehat{FED}\)
tương tự FN là phân giác góc \(\widehat{DFE}\)
mà EM cắt FN tại H
=> H là giao ba đường phân giác trong tam giác DEF
=> DA là phân giác trong góc FDE
Như vậy cần chứng minh H là trực tâm của tam giác ABC
Bài này có thể phải dùng tới định lí Menenaus hoặc Ceva. Em đã được học về các định lý này chưa?