Giúp tớ đầy đủ câu này nha.
Tam giác ABC có trực tâm H
CMR: \(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge\sqrt{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông tại A, phân giác AD, \(\frac{BD}{BC}\)= \(\frac{3}{7}\), BC = 20. Tính AB, AC
Theo bài ra ta có:
\(\frac{BD}{BC}=\frac{3}{7}\Rightarrow\frac{BD}{CD}=\frac{3}{4}\)
Tam giác ABC có phân giác AD
=> \(\frac{AB}{AC}=\frac{BD}{DC}=\frac{3}{4}\)=> Đặt \(AB=3a\)=> \(AC=4a\)
Tam giác ABC vuông tại A
=> \(AB^2+AC^2=BC^2\)
<=> \(\left(3a\right)^2+\left(4a\right)^2=20^2\)
<=> \(9a^2+16a^2=400\)
<=> \(a^2=16\Leftrightarrow a=4\)
=> AB=12; AC =16
Lũy thừa với số mũ hữu tỉ lên lớp 12 mới học mà \(a^{\frac{m}{n}}=\sqrt[n]{a^m}\)
\(=\sqrt{6+2\sqrt{3}\cdot\sqrt{3-\sqrt{3+2\sqrt{3}+1}}}\)
\(=\sqrt{6+2\sqrt{3}\cdot\sqrt{3-\sqrt{3}-1}}\)
\(=\sqrt{6+2\sqrt{3}\cdot\sqrt{2-\sqrt{3}}}\)
\(=\sqrt{6+\sqrt{6}\cdot\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+\sqrt{6}\cdot\left(\sqrt{3}-1\right)}\)
\(=\sqrt{6+3\sqrt{2}-\sqrt{6}}\)
\(\sqrt{x+9}+\sqrt{x+9}=0\)
\(\Leftrightarrow2\sqrt{x+9}=0\)
\(\Leftrightarrow\sqrt{x+9}=0:2\)
\(\Leftrightarrow\sqrt{x+9}=0\)
\(\Leftrightarrow\left(\sqrt{x+9}\right)^2=0^2\)
\(\Leftrightarrow x+9=0\)
\(\Leftrightarrow x=0-9\)
\(\Rightarrow x=-9\)
Ta có: \(x^2+4y^2+x=4xy+2y+2\)
\(\Rightarrow x^2-4xy+4y^2+x-2y=2\)
\(\Rightarrow\left(x-2y\right)^2+\left(x-2y\right)=2\)
\(\Rightarrow\left(x-2y\right)\left(x-2y+1\right)=2\)
Tìm các TH
Mặt khác : \(4x^2+4xy+y^2=2x+y+56\)
\(\Rightarrow\left(2x+y\right)^2-\left(2x+y\right)=56\)
\(\Rightarrow\left(2x+y\right)\left(2x+y-1\right)=56\)
Tìm các TH
A B C H D E F
Gọi D, E, F lần lượt là chân đường cao hạ từ A, B, C của tam giác ABC.
+) \(\Delta AHE~\Delta ACD\)( vì ^HAE =^CAD, ^HEA=^CDA )
=> \(\frac{HA}{CA}=\frac{EA}{AD}\)=> \(\frac{HA}{CA}.\frac{HB}{BC}=\frac{EA}{CA}.\frac{HB}{BC}=\frac{2.EA.HB}{2.CA.BC}=\frac{S_{\Delta AHB}}{S_{ABC}}\)(1)
+) \(\Delta CHD~\Delta CBF\)( vì ^DCH=^FCB, ^CDH=^CFB )
=> \(\frac{CH}{CB}=\frac{CD}{CF}\)=> \(\frac{CH}{CB}.\frac{AH}{AB}=\frac{CD.AH}{CF.AB}=\frac{S_{AHC}}{S_{ABC}}\)(2)
+) \(\Delta ABE~\Delta HBF\)
=> \(\frac{HB}{AB}=\frac{BF}{BE}\Rightarrow\frac{HB}{AB}.\frac{HC}{AC}=\frac{BF.HC}{BE.AC}=\frac{S_{BHC}}{S_{ABC}}\)(3)
Từ (1) ; (2) ; (3) => \(\frac{HA}{CA}.\frac{HB}{BC}+\frac{CH}{CB}.\frac{AH}{AB}+\frac{HB}{AB}.\frac{HC}{AC}=\frac{S_{ABE}}{S_{ABC}}+\frac{S_{ABE}}{S_{ABC}}+\frac{S_{ABE}}{S_{ABC}}=1\)
=> \(\frac{HA}{BC}.\frac{HB}{AC}+\frac{HB}{AC}.\frac{HC}{AB}+\frac{HC}{AB}.\frac{HA}{BC}=1\)
Đặt: \(\frac{HA}{BC}=x;\frac{HB}{AC}=y;\frac{HC}{AB}=z\); x, y, z>0
Ta có: \(xy+yz+zx=1\)
=> \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)=3\)
=> \(x+y+z\ge\sqrt{3}\)
"=" xảy ra khi và chỉ khi x=y=z
Vậy : \(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge\sqrt{3}\)
"=" xảy ra <=> \(\frac{HA}{BC}=\frac{HB}{AC}=\frac{HC}{AB}\)