K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2019

đặt BT =A \(A^2=2+\sqrt{3}+2-\sqrt{3}-2\sqrt{4-3}\)

\(A^2=4-2=2\Rightarrow A=\sqrt{2}\)

7 tháng 8 2019

cảm ơn bạn nhé

7 tháng 8 2019

 Với n = 1 thì \(n^2-n+2=2\) không là số chính phương.

Với n = 2 thì \(n^2-n+2=4\)là số chính phương

Với n > 2 thì \(n^2-n+2\)không là số chính phương vì :

\((n-1)^2< n^2-(n-2)< n^2\)

a) Vì ABCD là hình bình hành 

=> AB = CD 

=> AD  = BC 

Mà BECD là hình bình hành 

=> BE = CD 

=> BD = EC 

Mà AB = CD 

=> AB = BE 

=> A đối xứng E qua B 

b) Vì DBCF là hình bình hành 

=> BD = FC 

=> DF = BC

Mà BD = CE (cmt)

=> FC = CE 

=> C là trung điểm FE 

c) Vì C là trung điểm FE

=> AC là đường trung tuyến ∆AFE (1)

Vì AB = BE

=> FB là đường trung tuyến ∆AFE (2)

Vì DF = BC (cmt)

Mà AD = BC (cmt)

=> AD = FA 

=> BE là đường trung tuyến ∆AEF (3)

Từ (1) (2) (3) => BD , DE , AC là 3 đường trung tuyến ∆AEF

=> BE , DE , AC đồng quy 

7 tháng 8 2019

Tứ giác BKHC có 2 góc BKC và BHC cùng nhìn cạnh BC bằng nhau (do cùng bằng 90)

=> BKHC nội tiếp tâm O là trung điểm BC

7 tháng 8 2019

\(15+2\sqrt{35}+2\sqrt{15}+2\sqrt{21}=3+5+7+\left(2\sqrt{3}.\sqrt{5}+2\sqrt{5}.\sqrt{7}+2\sqrt{7}.\sqrt{3}\right)\)

\(=\left(\sqrt{3}+\sqrt{5}+\sqrt{7}\right)^2\)

6 tháng 8 2019

A B C M D K O

1) Vì \(\Delta\)ABC đều nên AB = BC = CA => A là điểm chính giữa cung lớn BC của (O)

=> ^BMA = ^CMA (=600). Kết hợp với ^MCB = ^MAB suy ra \(\Delta\)MDC ~ \(\Delta\)MBA (g.g)

=> \(MB.MC=MD.MA\) => \(MD=\frac{MB.MC}{MA}\le\frac{\left(MB+MC\right)^2}{4MA}\)

Mặt khác, theo ĐL Ptolemy: \(MB.AC+MC.AB=AM.BC\)=> \(MB+MC=MA\)(BC=CA=AB)

Do đó \(MD\le\frac{MA^2}{4MA}=\frac{MA}{4}\le\frac{2R}{4}=\frac{R}{2}\)(Vì AM là một dây của (O))

Dấu "=" xảy ra khi và chỉ khi AM là đường kính của (O). Vậy Max MD = R/2.

2) Ta thấy ^CMA = 600 = ^CAB. Từ đây \(\Delta\)ACM ~ \(\Delta\)KCA (g.g)

=> CA2 = CM.CK hay CB2 = CM.CK => \(\Delta\)CBM ~ \(\Delta\)CKB (c.g.c)

=> ^CBM = ^BKM => BC là tiếp tuyến của đường tròn (BKM) (đpcm).

7 tháng 8 2019

Từ giả thiết suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)  (*) (Vì a,b,c > 0)

Áp dụng BĐT Cauchy ta có:

\(\frac{1}{\sqrt{a^3+b}}\le\frac{1}{\sqrt{2}.\sqrt[4]{a^3b}}=\frac{1}{\sqrt{2}}.\sqrt[4]{\frac{1}{a}.\frac{1}{a}.\frac{1}{a}.\frac{1}{b}}\le\frac{1}{4\sqrt{2}}\left(\frac{3}{a}+\frac{1}{b}\right)\)

Đánh giá tương tự: \(\frac{1}{\sqrt{b^3+c}}\le\frac{1}{4\sqrt{2}}\left(\frac{3}{b}+\frac{1}{c}\right);\frac{1}{\sqrt{c^3+a}}\le\frac{1}{4\sqrt{2}}\left(\frac{3}{c}+\frac{1}{a}\right)\)

Từ đó, kết hợp với (*) suy ra:

 \(\frac{1}{\sqrt{a^3+b}}+\frac{1}{\sqrt{b^3+c}}+\frac{1}{\sqrt{c^3+a}}\le\frac{1}{4\sqrt{2}}.4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{3\sqrt{2}}{2}\)(đpcm)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1.\)

kết bạn với mình không

6 tháng 8 2019

f(x) có nghiệm 

=> \(b^2\ge4c\)

\(f\left(2\right)=4+2b+c=\frac{b}{2}+\frac{b}{2}+\frac{b}{2}+\frac{b}{2}+c+1+1+1+1\)

                                        \(\ge9\sqrt[9]{\frac{1}{16}b^4c}\ge9\sqrt[9]{\frac{1}{16}.\left(4c\right)^2.c}=9\sqrt[3]{c}\)(ĐPCM)

Dấu bằng xảy ra khi b=2,c=1