K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 5 2024

Lời giải:

ĐKXĐ: $x\geq 1$

PT $\Leftrightarrow \sqrt{(x-1)+8\sqrt{x-1}+16}+\sqrt{(x-1)+4\sqrt{x-1}+4}=6$

$\Leftrightarrow \sqrt{(\sqrt{x-1}+4)^2}+\sqrt{(\sqrt{x-1}+2)^2}=6$

$\Leftrightarrow |\sqrt{x-1}+4|+|\sqrt{x-1}+2|=6$

$\Leftrightarrow 2\sqrt{x-1}+6=6$

$\Leftrightarrow \sqrt{x-1}=0$

$\Leftrightarrow x-1=0$

$\Leftrightarrow x=1$ (tm)

 

4 tháng 9 2024

My favorite community helper is a dedicated nurse named Sarah. She has warm brown eyes and a friendly smile that instantly puts patients at ease. Sarah works tirelessly at the local hospital, providing care and support to those in need. She often goes beyond her duties, organizing health workshops and free check-up camps for the community. Her compassionate nature and unwavering commitment make her a beloved figure. I admire her selflessness and the positive impact she has on people’s lives. Knowing that someone like Sarah is looking out for our well-being fills me with gratitude and hope for our community's health.

\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(m-1\right)\)

\(=4-4m+4=-4m+8\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

=>-4m+8>0

=>-4m>-8

=>m<2

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)

\(x_1^2+x_2^2-3x_1x_2=2m^2+\left|m+3\right|\)

=>\(\left(x_1+x_2\right)^2-5x_1x_2=2m^2+\left|m+3\right|\)

=>\(2m^2+\left|m+3\right|=2^2-5\left(m-1\right)\)

=>\(2m^2+\left|m+3\right|=4-5m+5=-5m+9\)

=>\(2m^2+\left|m+3\right|+5m-9=0\)(1)

TH1: -3<=m<2

(1) sẽ trở thành \(2m^2+m+3+5m-9=0\)

=>\(2m^2+6m-6=0\)

=>\(m^2+3m-3=0\)

=>\(\left[{}\begin{matrix}m=\dfrac{-3+\sqrt{21}}{2}\left(nhận\right)\\m=\dfrac{-3-\sqrt{21}}{2}\left(loại\right)\end{matrix}\right.\)

TH2: m<-3

(1) sẽ trở thành \(2m^2-m-3+5m-9=0\)

=>\(2m^2+4m-12=0\)

=>\(m^2+2m-6=0\)

=>\(\left(m+1\right)^2=7\)

=>\(\left[{}\begin{matrix}m=\sqrt{7}-1\left(loại\right)\\x=-\sqrt{7}-1\left(nhận\right)\end{matrix}\right.\)

1: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI\(\perp\)CD

Xét tứ giác OIAM có \(\widehat{OIM}=\widehat{OAM}=90^0\)

nên OIAM là tứ giác nội tiếp

=>O,I,A,M cùng thuộc một đường tròn

2: ΔOAM vuông tại A

=>\(AO^2+AM^2=MO^2\)

=>\(AM^2=\left(\dfrac{3R}{2}\right)^2-R^2=\dfrac{5}{4}R^2\)

Xét (O) có

\(\widehat{MAC}\) là góc tạo bởi tiếp tuyến AM và dây cung AC

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{MAC}=\widehat{ADC}\)

Xét ΔMAC và ΔMDA có

\(\widehat{MAC}=\widehat{MDA}\)

\(\widehat{AMC}\) chung

Do đó: ΔMAC~ΔMDA

=>\(\dfrac{MA}{MD}=\dfrac{MC}{MA}\)

=>\(MC\cdot MD=MA^2=\dfrac{5}{4}R^2\)

AH
Akai Haruma
Giáo viên
12 tháng 5 2024

Lời giải:
Gọi số kg nho và táo bác An mua lần lượt là $a$ và $b$ (kg). Theo bài ra ta có:

\(\left\{\begin{matrix} a+b=7\\ 65000a+50000b=410000\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=7\\ 13a+10b=82\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=4\\ b=3\end{matrix}\right.\)

Vậy bác An mua 4 kg nho và 3 kg táo.