Tìm số dư của \(3^{506^{80}}\) khi cho cho 7, 15
P/s: Em cần phần: "tìm số dư khi chia cho 15" thôi ạ, phần kia em làm ra rồi.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,x^3-3x^2-4x+12\)
\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-4\right)\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
\(c,3x^3-7x^2+17x-5\)
\(\Leftrightarrow3x^3-x^2-6x^2+2x+15x-5\)
\(\Leftrightarrow x^2\left(3x-1\right)-2x\left(3x-1\right)+5\left(3x-1\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2-2x+5\right)\)
\(\text{d) 2x}^4- 7x^3 - 2x^2 + 13x + 6\)
\(\text{= (2x^4 + 2x^3) - (9x^3 + 9x^2) + (7x^2 + 7x) + (6x + 6)}\)
\(\text{= 2x^3(x + 1) - 9x^2(x + 1) + 7x(x + 1) + 6(x + 1)}\)
\(\text{= (x + 1)(2x^3 - 9x^2 + 7x + 6)}\)
\(\text{= (x + 1)(2x + 1)(x - 3)(x - 2)}\)
\(\frac{x-2}{3}+\frac{x}{2}=\frac{2+x}{4}\)
\(\Leftrightarrow\frac{x-2}{3}.12+\frac{x}{2}.12=\frac{2+x}{4}.12\)
\(\Leftrightarrow4\left(x-2\right)+6x=3\left(x+2\right)\)
\(\Leftrightarrow10x-8=3x+6\)
\(\Leftrightarrow10x=3x+6+8\)
\(\Leftrightarrow10x-3x=3x+14-3x\)
\(\Leftrightarrow7x=14\)
\(\Leftrightarrow x=\frac{14}{7}=2\)
=> x = 2
\(\frac{x-5}{x^2-16}+\frac{3}{x+4}=\frac{7}{x-4}\)
\(\Leftrightarrow\frac{x-5}{x^2-16}\left(x+4\right)\left(x-4\right)+\frac{3}{x+4}\left(x+4\right)\left(x-4\right)=\frac{7}{x-4}\left(x+4\right)\left(x-4\right)\)
\(\Leftrightarrow x-5+3\left(x-4\right)=7\left(x+4\right)\)
\(\Leftrightarrow4x-17=7x+28\)
\(\Leftrightarrow4x=7x+28+17\)
\(\Leftrightarrow4x=7x+45\)
\(\Leftrightarrow4x-7x=45\)
\(\Leftrightarrow-3x=45\)
\(\Leftrightarrow x=\frac{45}{-3}=-15\)
=> x = -15
Ta có
\(x+\frac{1}{x}=3\Leftrightarrow\left(x+\frac{1}{x}\right)^2=9\)
\(\Leftrightarrow x^2+\frac{1}{x^2}=7\Rightarrow\frac{x^4+1}{x^2}=7\Rightarrow\frac{x^2}{x^4+1}=\frac{1}{7}\)
Vậy \(E=\frac{1}{7}\)
Em kiểm tra lại đề nhé.
Giải thích:
Gọi M là giao điểm 2 đường chéo AC, BD
=> AC+BD=AM+BM+MC+MD>AB+CD
=> Ko thể xảy ra AC+BD=AB+CD
b, \(2x+4x^2=5-5+4-2^2\)
\(\Leftrightarrow2x\left(1+2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\1+2x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\)
Vậy...
\(2x+4x^2=5-5+4-2^2\)
\(\Leftrightarrow2x+4x^2=0\)
\(\Leftrightarrow4x^2+2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\)
Vậy:...
I O A B C D 1 1
a) Ta có: \(\widehat{B}=120^o,\widehat{A}=90^o\Rightarrow\widehat{C}+\widehat{D}=360^o-\widehat{A}-\widehat{B}=150^o\)
CO, DO là hai tia phân giác góc C và góc D
=> \(\widehat{C_1}+\widehat{D_1}=\frac{1}{2}\widehat{C}+\frac{1}{2}\widehat{D}=\frac{1}{2}\left(\widehat{C}+\widehat{D}\right)=\frac{1}{2}.150^o=75^o\)
=> \(\widehat{COD}=180^o-\left(\widehat{C_1}+\widehat{D_1}\right)=180^o-75^o=105^o\)
b)
Xét tam giác COD
Ta có: \(\widehat{COD}=180^o-\left(\widehat{C_1}+\widehat{D_1}\right)=180^o-\frac{1}{2}\left(\widehat{C}+\widehat{D}\right)\)
Vì: \(\widehat{C_1}+\widehat{D_1}=\frac{1}{2}\widehat{C}+\frac{1}{2}\widehat{D}=\frac{1}{2}\left(\widehat{C}+\widehat{D}\right)\)
Mặt khác: Xét tứ giác ABCD ta có: \(\widehat{C}+\widehat{D}=360^o-\widehat{A}-\widehat{B}\)
=> \(\widehat{COD}=180^o-\frac{1}{2}\left(360^o-\widehat{A}-\widehat{B}\right)=\frac{1}{2}\widehat{A}+\frac{1}{2}\widehat{B}\)
c) Tương tự ta cũng chứng minh dc:
\(\widehat{BIA}=\frac{1}{2}\widehat{C}+\frac{1}{2}\widehat{D}\)
=> \(\widehat{COD}+\widehat{BIA}=\frac{1}{2}\widehat{A}+\frac{1}{2}\widehat{B}+\frac{1}{2}\widehat{C}+\frac{1}{2}\widehat{D}=\frac{1}{2}\left(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}\right)=\frac{1}{2}.360^o=180^o\)
=>\(\widehat{FOE}+\widehat{EIF}=180^o\)
=> \(\widehat{OEI}+\widehat{IFO}=180^o\)
Vậy tứ giác EIF có các góc đối bù nhau!
Ta có BAD + ABC + BCD + CDA = 360 độ
ADC + BCD = 360 - 120 - 90 = 150 độ
=> BCO = OCD = 1/2 BCD
=> ADO = ODC = 1/2 ADC
=> ODC + OCD = 1/2 ODC + 1/2 OCD = ODC+OCD/2
=> ODC + OCD = 150 /2 =75 độ
Mà ODC + OCD +DOC = 180 độ
=> DOC = 180 - 75 = 105 độ
B) COD = 180 - (ODC + OCD)
=> COD = 180 - 1/2ADC + 1/2 BCD
Mà ADC + BCD = 360 - ( BAD + ABC)
COD = 180 - [ 360 - 1/2(BAD + ABC )]
\(2018^2+2016^2\)
\(=\left(2017+1\right)^2+\left(2017-1\right)^2\)
\(=2017^2+2\cdot2017+1+2017^2-2\cdot2017+1\)
\(=2\cdot2017^2+2\)
\(>B\)
THoi giải lại z :
\(2x^2-\left(x+1\right)\left(x-2\right)-x\left(x+1\right)+5\)
\(=2x^2-x^2+2x-x+2-x^2-x+5\)
\(=2+5\)
\(=7\)
Vậy GTBT ko phụ thuộc vào giá trị biến x
\(2x^2-\left(x+1\right)\left(x-2\right)-x\left(x+1\right)+5\)
\(=2x^2-x^2+2x-x+2-x^2-x+5\)
\(=\left(2x^2-x^2-x^2\right)+\left(-2x+x+x\right)-2+5\)
\(=2+5=7\)
Vậy GTBT ko phụ thuộc vào giá trị của biến x
kham khảo nha
Câu hỏi của Tsumi Akochi - Toán lớp 8 | Học trực tuyến
vào thống kê hỏi đáp có màu xanh ở câu trả lời này ấn zô dố sẽ được
hc tốt
giai lai
\(506^{80}\equiv2^{80}\equiv0\left(\text{mod }4\right)\)
Đặt \(506^{80}=4k\left(k\inℕ^∗\right)\)
\(\Rightarrow3^{506^{80}}=3^{4k}\)
Ta có:
\(3^{4k}⋮3\left(k\inℕ^∗\right)\Rightarrow3^{4k}-6⋮3\)(1)
\(3^4\equiv1\left(mod5\right)\Rightarrow3^{4k}\equiv1\left(mod5\right)\Rightarrow3^{4k}-1-5⋮5\)
\(\Rightarrow3^{4k}-6⋮5\)(2)
Từ (1) và (2) => 34k chia hết cho 15 vì (3,5)=1
Vậy...
nhầm dòng gần cuối 34k-6 :((