cho ba số a,b,c \(\ge\)0 và a+b+c = 3
Tìm GTLN của K =\(\sqrt{12a+\left(b-c\right)^2}\)+ \(\sqrt{12b+\left(a-c\right)^2}\)+ \(\sqrt{12c+\left(a-b\right)^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ko nghĩ đây là bài lớp 9
\(a+b=c\)
\(\Rightarrow\hept{\begin{cases}a=c-b\\b=c-a\\c=a+b\end{cases}}\)
\(a,x^8+14x^4+1=\left(x^8+14x^4+49\right)-48\)
\(=\left(x^4+7\right)^2-48\)
\(=\left(x^4+7+\sqrt{48}\right)\left(x^4+7-\sqrt{48}\right)\)
\(b,x^8+98x^4+1\)
\(=\left(x^8+98x^4+2401\right)-2400\)
\(=\left(x^4+49\right)^2-2400\)
\(=\left(x^4+49+20\sqrt{6}\right)\left(x^4+49-20\sqrt{6}\right)\)
Mình nghĩ vậy k bt đúng k :)
a) = a^10 - a + a^5 - a^2 + a^2 + a + 1
= a(a^9 - 1) + a^2(a^3 - 1) + (a^2 + a + 1)
= a.(a^3-1)(a^6 + a^3 + 1) + a^2(a-1)(a^2+a+1) + (a^2 + a + 1)
= a.(a-1)(a^2 + a + 1)(a^6 + a^3 + 1) + a^2(a-1)(a^2+a+1) + (a^2 + a + 1)
= (a^2 + a + 1)[(a.(a-1)(a^6 + a^3 + 1) + a^2 + 1]
b) x^5 - x^4 - 1 = x^5 - x^4 + x^3 - x^3 + x^2 - x - x^2 + x - 1
= x^3(x^2 - x + 1) - x(x^2 - x + 1) - (x^2 - x + 1)
= (x^2 - x + 1)(x^3 - x - 1)
a) \(a^{10}+a^5+1\)
\(=\left(a^{10}-a^9+a^7-a^6+a^5-a^3+a^2\right)\)
\(+\left(a^9-a^8+a^6-a^5+a^4-a^2+a\right)\)
\(+\left(a^8-a^7+a^5-a^4+a^3-a+1\right)\)
\(=a^2\left(a^8-a^7+a^5-a^4+a^3-a+1\right)\)
\(+a\left(a^8-a^7+a^5-a^4+a^3-a+1\right)\)
\(+\left(a^8-a^7+a^5-a^4+a^3-a+1\right)\)
\(=\left(a^2+a+1\right)\left(a^8-a^7+a^5-a^4+a^3-a+1\right)\)
@hieu nguyen Em có nhân chéo hai vế và khai triển ra nhưng cũng không ra cái gì ạ.
Có lẽ đề là n nguyên dương:v
Với \(n=1\) thì \(\frac{1}{1+1}+\frac{1}{2\cdot1}=1>\frac{1}{2}\)
Giả sử bài toán đúng với \(n=k\) khi đó:\(A_k=\frac{1}{k+1}+\frac{1}{k+2}+\frac{1}{k+3}+....+\frac{1}{2k}\)
Ta cần chứng minh bài toán đúng với \(n=k+1\) thật vậy:
\(A_{k+1}=\frac{1}{k+2}+\frac{1}{k+3}+\frac{1}{k+4}+....+\frac{1}{2k+2}\)
\(A_{k+1}=\left(\frac{1}{k+1}+\frac{1}{k+2}+\frac{1}{k+3}+.....+\frac{1}{2k}\right)+\left(\frac{1}{2k+1}+\frac{1}{2k+2}-\frac{1}{k+1}\right)\)
\(A_{k+1}=A_k+\left(\frac{1}{2k+1}-\frac{1}{2k+2}\right)>\frac{1}{2}\) vì \(A_k>\frac{1}{2};\frac{1}{2k+1}-\frac{1}{2k+2}>0\) với mọi k nguyên dương.
Vậy bài toán được chứng minh.
Cô-si ngược dấu thôi~~
Ta có:\(\sqrt{12a+\left(b-c\right)^2}=\frac{1}{\sqrt{12}}\cdot\sqrt{12\left[12a+\left(b-c\right)^2\right]}\)
\(\le\frac{1}{\sqrt{12}}\cdot\frac{12+12a+\left(b-c\right)^2}{2}\)
Tương tự ta có:
\(K\le\frac{1}{\sqrt{12}}\left(\frac{12+12a+\left(b-c\right)^2}{2}+\frac{12+12b+\left(a-c\right)^2}{2}+\frac{12+12c+\left(a-b\right)^2}{2}\right)\)
\(=\frac{1}{\sqrt{12}}\cdot\frac{36+12\left(a+b+c\right)+2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)}{2}\)
Ta có:\(a^2+b^2+c^2\ge ab+bc+ca\) ( tự cm )
\(\Rightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\ge0\)
\(\Rightarrow K\le\frac{1}{\sqrt{12}}\cdot36=6\sqrt{3}\)
P/S:Em ko chắc đâu ạ.sợ bị ngược dấu lắm.Nhất là đoạn cuối:(((
\(\sqrt{12a+\left(b-c\right)^2}\le\sqrt{12a+\left(b+c\right)^2}=\sqrt{12a+\left(3-a\right)^2}=a+3\)
:)