K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2019

  A B C D K H 1 2 1 1 2 1

Xét tam giác AHB và tam giác CKA có:

\(\widehat{AHB}=\widehat{CKA}=90^o\)

\(\widehat{A_1}=\widehat{B_1}\)( cùng phụ \(\widehat{A_2}\))

=> \(\Delta AHB~\Delta CKA\)

=> \(\frac{AH}{CK}=\frac{HB}{KA}\Rightarrow AH.KA=HB.CK\) (1)

Xét  \(\Delta CKD\) và \(\Delta DHB\)

có: \(\widehat{DHB}=\widehat{CKD}=90^o\)

\(\widehat{D_1}=\widehat{C_1}\)( cùng phụ \(\widehat{D_2}\))

=> ​​\(\Delta CKD~\Delta DHB\)

=> \(\frac{CK}{DH}=\frac{KD}{HB}\Rightarrow KD.DH=CK.HB\)(2)

Từ (1) , (2) 

=> \(KD.DH=AH.KA\)

=> \(\frac{KD}{AH}=\frac{KA}{DH}=\frac{KD+KA}{AH+HD}=\frac{AD}{AD}=1\)

=> KD=AH

21 tháng 6 2019

A B C D H E I K O

Gọi Q và O lần lượt là giao điểm cuarDH và AB; HE và AC. ( Điểm Q chưa ký hiệu trên hình vì nhỏ quá nhé ).

Ta dễ dàng chứng minh được: tam giác vuông KHO = tam giác vuông KEO ( hai cạnh góc vuông )

=> \(\widehat{HKO}=\widehat{EKO}\)<=> KO là phân giác ngoài của tam giác IKH ( 1 )

Do \(AH\perp BC\)=> HC là phân giác ngoài của tam giác IKH ( 2 )

Mà KO cắt HC tại C ( 3 ). Từ ( 1 ); ( 2 ) và ( 3 ) => IC là phân giác trong của tam giác IKH <=> \(\widehat{HIC}=\widehat{CIK}=\frac{1}{2}\widehat{HIE}\)( * )

Ta dễ dàng chứng minh được : tam giác vuông DIQ = tam giác vuông HIQ ( hai cạnh góc vuông ) => \(\widehat{DIQ}=\widehat{QIH}=\frac{1}{2}\widehat{DIH}\)( # )

Do D; I ; E thẳng hàng ( theo bài ra ) nên \(\widehat{DIH}+\widehat{HIE}=180^o\)( % )

Từ ( * ); ( # ) và ( % ) => \(\widehat{QIH}+\widehat{HIC}=\frac{1}{2}\widehat{DIH}+\frac{1}{2}\widehat{HIE}\Leftrightarrow\widehat{BIC}=\frac{1}{2}\left(\widehat{DIH}+\widehat{HIE}\right)=\frac{1}{2}.180^o=90^o\)

Do hai góc AIC và BIC là hai góc nằm ở vị trí kề bù nên : \(\widehat{AIC}+\widehat{BIC}=180^o\Leftrightarrow\widehat{AIC}=180^o-\widehat{BIC}=180^o-90^o=90^o\)

Tương tự, ta chứng minh được \(\widehat{AKB}=90^o\)Vậy số đo \(\widehat{AIC},\widehat{AKB}\)đều là \(90^o.\)

22 tháng 6 2019

Cám ơn bạn Đỗ Đức Lợi nha !

21 tháng 6 2019

A B C D M 2 1 2 1 1 2

Lấy điểm M thuộc đáy lớn sao cho: AD=DM

Theo bài ra AD+BC=DC

=> BC=MC

Do đó: tam giác ADM cân tại D => \(\widehat{A}_1=\widehat{M_1}\)

Mặt khác \(\widehat{A_2}=\widehat{M_1}\)( sole trong)

=> \(\widehat{A_2}=\widehat{A_1}\)=> AM là phân giác góc A

 Tam giác BCM cân tại C => \(\widehat{B}_1=\widehat{M_2}\)

Mặt khác \(\widehat{B_2}=\widehat{M_2}\)( sole trong)

=> \(\widehat{B_2}=\widehat{B_1}\)=> BM là phân giác góc A

Mà M thuộc đáy lớn DC

Vậy hai đường phân giác của hai góc ở đáy nhỏ cùng đi qua một điểm thuộc đáy lớn.

21 tháng 6 2019

Gọi số sách ngăn trên là a (a thuộc N*)

Khi đó số sách ngăn dưới là 5a

Khi thêm số sách vào ngăn trên, thì số sách là a + 25

Khi bớt số sách ở ngăn dưới, thì số sách là 5a -15

Vì khi thêm và bớt, số sách ngăn trên bằng 2/3 số sách ngăn dưới, nên ta có phương trình:

      \(a+25=\frac{2}{3}\left(5a-15\right)\)

\(\Leftrightarrow a+25=\frac{10}{3}a-10\)

\(\Leftrightarrow a-\frac{10}{3}a=-10-25\)

\(\Leftrightarrow\frac{-7}{3}a=-35\)

\(\Leftrightarrow a=-35:\left(\frac{-7}{3}\right)\)

\(\Leftrightarrow a=15\)(nhận)

Vậy số sách ngăn trên là 15 cuốn. Khi đó số sách ngăn dưới là 5a = 5 x 15 = 75 cuốn

21 tháng 6 2019

Gọi tuổi An hiện nay là a (a thuộc N*)

       tuổi mẹ An là 3a 

4 năm trước, tuổi An là a - 4, tuổi mẹ An là 3a - 4

Vì 4 năm trước tuổi mẹ An gấp 4 lần tuổi An, nên ta có Phương Trình:

4(a - 4) = 3a - 4

4a - 16 = 3a - 4

4a - 3a = -4 + 16

a = 12 (NHẬN)

Vậy tuổi bạn An là 12 

        

21 tháng 6 2019

Gọi x; y lần lượt là tuổi của mẹ An và của An (ĐKXĐ: \(x>y>0;x\inℕ;y\inℕ\))

Ta có hpt: \(\hept{\begin{cases}x-4=4\left(y-4\right)\\x=3y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=36\\y=12\end{cases}}\)(nhận)

Vậy hiện tại mẹ An 36 tuổi và An 12 tuổi

21 tháng 6 2019

Có bạn học sinh bảo là từ giờ sẽ tập trung ôn hình :)

\(8^{100}\equiv74^{10}\equiv124^2\equiv\left(-1\right)^2\equiv1\left(mod125\right)\)

\(932\equiv32\left(mod100\right)\Rightarrow932^{73}\equiv32^{73}\equiv32^{72}.32\equiv24^{12}.32\equiv76^2.32\equiv32\left(mod100\right)\)

Đặt: \(932^{73}=100t+32\)

=> \(8^{932^{73}}\equiv8^{100t+32}\equiv8^{32}\equiv86\left(mod125\right)\)làm tiếp nhé

21 tháng 6 2019

Đk: \(\hept{\begin{cases}x^2-9\ge0\\2x-6+\sqrt{x^2-9}\ne0\end{cases}}\)

\(A=\frac{\sqrt{\left(x+3\right)^2}+2\sqrt{\left(x-3\right)\left(x+3\right)}}{2\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+3\right)\left(x-3\right)}}\)

TH1: \(\hept{\begin{cases}x+3\ge0\\x-3\ge0\end{cases}\Leftrightarrow}x\ge3\)

\(A=\frac{\sqrt{x+3}.\sqrt{x+3}+2\sqrt{x-3}.\sqrt{x+3}}{2\sqrt{x-3}\sqrt{x-3}+\sqrt{x+3}.\sqrt{x-3}}\)

\(A=\frac{\sqrt{x+3}\left(\sqrt{x+3}+2\sqrt{x-3}\right)}{\sqrt{x-3}\left(2\sqrt{x-3}+\sqrt{x+3}\right)}=\frac{\sqrt{x+3}}{\sqrt{x-3}}=\frac{\sqrt{x^2-9}}{x-3}\)

TH2: \(\hept{\begin{cases}x+3\le0\\x-3\le0\end{cases}\Leftrightarrow}x\le-3\)

\(A=\frac{\sqrt{\left(-x-3\right)^2}+2\sqrt{\left(-x+3\right)\left(-x-3\right)}}{2\sqrt{\left(-x+3\right)^2}+\sqrt{\left(-x+3\right)\left(-x-3\right)}}\)

\(A=\frac{\sqrt{-x-3}\left(\sqrt{-x-3}+2\sqrt{-x+3}\right)}{\sqrt{-x+3}\left(2\sqrt{-x+3}+\sqrt{-x-3}\right)}=\frac{\sqrt{-x-3}}{\sqrt{-x+3}}=\frac{\sqrt{x^2-9}}{3-x}\)

21 tháng 6 2019

\(5^6\equiv1\left(mod8\right)\)

\(353\equiv5\left(mod6\right)\Rightarrow353^{81}\equiv5^{81}\equiv5\left(mod6\right)\)

Đặt: \(358^{81}=6t+5\)

=> \(5^{353^{81}}\equiv5^{6t+5}\equiv5^5\equiv5\left(mod8\right)\)

=>\(5^{353^{81}}-5-15.8\equiv0\left(mod8\right)\)

\(\Rightarrow5^{353^{81}}-125\equiv0\left(mod8\right)\)

mà : \(5^{353^{81}}\equiv0\left(mod125\right)\Rightarrow5^{353^{81}}-125\equiv0\left(mod125\right)\)

\(\Rightarrow5^{353^{81}}-125\equiv0\left(mod1000\right)\)

21 tháng 6 2019

Tách: 1000=8.125

Ta có: \(6^{728^{32}}\equiv0\left(mod8\right)\)

Ta có: \(6^{25}=6^{5.5}\equiv26^5\equiv1\left(mod125\right)\)

\(728\equiv3\left(mod25\right)\)

=> \(728^{32}\equiv3^{32}\equiv11^4\equiv16\left(mod25\right)\)

=> Đặt: \(728^{32}=25t+16\)

tự làm tiếp nhé!

21 tháng 6 2019

Em làm tiếp thử ạ!

\(6^{25t}.6^{16}\equiv1.81\equiv81\left(mod125\right)\)

Từ đây ta có: \(6^{728^{32}}-81\equiv0\left(mod125\right)\Leftrightarrow6^{728^{32}}-81-375\equiv0\left(mod81\right)\)

\(\Leftrightarrow6^{728^{32}}-456\equiv0\) (mod125)

Lại có \(6^{728^{32}}-456\equiv0\left(mod8\right)\) 

Suy ra \(6^{728^{32}}\equiv456\left(mod1000\right)\) (vì (125;8) = 1)

21 tháng 6 2019

A B C D 1 1 2 2

a) Ta có ABCD  là hình thang cân

=> \(\widehat{D}=\widehat{C},\widehat{A}=\widehat{B}\)(1)

Mà: \(\widehat{A}+\widehat{B}=\frac{1}{2}\left(\widehat{C}+\widehat{D}\right)\)(2)

Từ (1), (2)

=> \(2.\widehat{A}=\frac{1}{2}.2.\widehat{D}\Leftrightarrow\widehat{D}=2.\widehat{A}\)(3)

Mặt khác: \(\widehat{A}+\widehat{D}=180^o\)(4)

Từ (3), (4)

=> \(\widehat{A}=60^o\Rightarrow\widehat{D}=120^o\)

=> \(\widehat{B}=60^o;\widehat{C}=60^o\)

b)  Ta có:  \(\widehat{C}=\widehat{C_1}+\widehat{C_2}\Rightarrow\widehat{C_1}=\widehat{C}-\widehat{C_2}=120^o-90^o=30^o\)

=> \(\widehat{A_1}=\widehat{C_1}=30^o\left(soletrong\right)\)

Mà \(\widehat{A}=\widehat{A_1}+\widehat{A_2}\Rightarrow\widehat{A_2}=30^o\)

Từ 2 điều trên suy ra góc A1 = góc A2

=> AC là phân giác góc DAB