cho tam giác abc vuông tại a, ah là đường cao. Trên tia đối của tia ah lấy điểm d sao cho ah=ad, lấy e là trung điểm của hc, nối de cắt ac tại f.
C.M a.hf=1/3cd
b.lấy i là trung điểm của ah.C.M ei vuông ab.
c. C.M bi vuông ae
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(x=\left(\frac{3}{7}\right)^7:\left(\frac{3}{7}\right)^5\)
\(x=\left(\frac{3}{7}\right)^2=\frac{9}{49}\)
b)
\(-\frac{1}{27}\cdot x=\frac{1}{81}\)
\(x=\frac{1}{81}:\left(-\frac{1}{27}\right)\)
\(x=-\frac{1}{3}\)
c)
\(\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
\(x-\frac{1}{2}=\frac{1}{3}\)
\(x=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}\)
d)
\(\left(x+\frac{1}{2}\right)^4=\left(\frac{2}{3}\right)^4\)
\(\orbr{\begin{cases}x+\frac{1}{2}=\frac{2}{3}\\x+\frac{1}{2}=\frac{-2}{3}\end{cases}}\)
\(\orbr{\begin{cases}x=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}\\x=-\frac{2}{3}-\frac{1}{2}=-\frac{7}{6}\end{cases}}\)
Sửa lại câu a : ( nhìn sai số )
\(\frac{3^5}{5^5}\cdot x=\frac{3^7}{7^7}\)
\(x=\frac{3^7}{7^7}:\frac{3^5}{5^5}\)
\(x=\frac{3^7}{7^7}\cdot\frac{5^5}{3^5}\)
\(x=\frac{5^5\cdot3^2}{7^7}\)
\(x=\frac{28125}{823453}\)
a) M + (5x2 - 2xy) = 6x2 + 9xy - y2
=> M = (6x2 + 9xy - y2) - (5x2 - 2xy)
=> M = 6x2 + 9xy - y2 - 5x2 + 2xy = x2 + 11xy - y2
b) (25x2y - 13xy2 + y3) - m = 11x2y - 2y3
=> m = (25x2y - 13xy2 + y3) - (11x2y - 2y3)
=> m = 25x2y - 13xy2 + y3 - 11x2y + 2y3 = 14x2y - 13xy2 + 3y3
c) M = 0 - (12x4 - 15x2y + 2xy2 + 7) = -12x4 + 15x2y - 2xy2 - 7
a,\(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)
\(< =>M=6x^2+9xy-y^2-5x^2+2xy\)
\(< =>M=x^2+11xy-y^2\)
b,\(\left(25x^2y-13xy^2+y^3\right)-M=11x^2y-2y^3\)
\(< =>M=25x^2y-13xy^2+y^3-11x^2y+2y^3\)
\(< =>M=14x^2y-12xy^2+3y^3\)
c,\(M+\left(12x^4-15x^2y+2xy^2+7\right)=0\)
\(< =>M=15x^2y-7-2xy^2-12x^4\)
\(\frac{3x-4}{2}=\frac{1}{3}\)
<=> 3( 3x - 4 ) = 2.1
<=> 9x - 12 = 2
<=> 9x = 14
<=> x = 14/9
\(\frac{3x-4}{2}=\frac{1}{3}\)
3x-4.3=2.1
3x-12=2
3x=12+2
3x=14
x=14:3
x=14/3
vậy x=14/3
Bài làm:
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
=> \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=0\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=0\) (1)
Mà \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\), cách CM như sau:
\(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
Tương tự: \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\) ; \(\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ca}\)
Cộng vế 3 BĐT trên lại ta sẽ được: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
Thay vào (1) ta được:
\(0=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\ge3\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le0\)
Dấu "=" xảy ra khi: \(a=b=c\)
Vì AB // DM :
⇒DMAˆ=BAMˆ⇒DMA^=BAM^(2 góc so le trong)
⇒CAMˆ=EMAˆ⇒CAM^=EMA^(2 góc so le trong)
⇒DMAˆ+EMAˆ=CAMˆ+BAMˆ⇔DMEˆ=CABˆ⇒DMA^+EMA^=CAM^+BAM^⇔DME^=CAB^(1)
Vì EM // AC
⇒MECˆ=ACEˆ⇒MEC^=ACE^(2 góc so le trong)
⇒DECˆ=ECMˆ⇒DEC^=ECM^(2 góc so le trong)
⇒MECˆ+DECˆ=ACEˆ+ECMˆ⇔MEDˆ=ACMˆ⇒MEC^+DEC^=ACE^+ECM^⇔MED^=ACM^(2)
Đặt ab + 4 = m22 (m ∈ N)
⇒ab = m22− 4 = (m − 2) (m + 2)
⇒b =(m−2).(m+2)a(m−2).(m+2)a
Ta có:m=a+2⇒⇒ m-2=a
⇒⇒b=a(a+4)aa(a+4)a=a+4
Vậy với mọi số tự nhiên a luôn tồn tại b = a + 4 để ab + 4 là số chính phương.
\(\frac{8^2\cdot4^5}{2^{20}}=\frac{\left(2^3\right)^2\cdot\left(2^2\right)^5}{2^{20}}=\frac{2^6\cdot2^{10}}{2^{20}}=\frac{2^{16}}{2^{20}}=2^{-4}=\frac{1}{16}\)
\(\frac{81^{11}\cdot3^{17}}{27^{10}\cdot9^{15}}=\frac{\left(3^4\right)^{11}\cdot3^{17}}{\left(3^3\right)^{10}\cdot\left(3^2\right)^5}=\frac{3^{44}\cdot3^{17}}{3^{30}\cdot3^{10}}=\frac{3^{61}}{3^{40}}=3^{21}\)
\(\frac{8^2.4^5}{2^{20}}=\frac{\left(2^3\right)^2.\left(2^2\right)^5}{2^{20}}=\frac{2^6.2^{10}}{2^{20}}=\frac{2^{16}}{2^{20}}=\frac{1}{2^4}=\frac{1}{16}\)
\(\frac{81^{11}.3^{17}}{27^{10}.9^{15}}=\frac{\left(3^4\right)^{11}.3^{17}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\frac{3^{44}.3^{17}}{3^{30}.3^{30}}=\frac{3^{61}}{3^{60}}=3\)