Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Do \(My||BC\Rightarrow\widehat{CMy}=\widehat{MCB}\) (so le trong)
Mà \(\widehat{MCB}=45^0\Rightarrow\widehat{CMy}=45^0\)
lại có My là phân giác của \(\widehat{CMx}\Rightarrow\widehat{CMx}=2\widehat{CMy}\)
\(\Rightarrow\widehat{CMx}=2.45^0=90^0\)
b.
Do \(BC||My\Rightarrow\widehat{CBM}=\widehat{xMy}\)
Mà \(\widehat{xMy}=\widehat{CMy}=45^0\) (My là phân giác)
\(\Rightarrow\widehat{CBM}=45^0\)
Lại có Bx là phân giác \(\widehat{ABC}\Rightarrow\widehat{ABC}=2\widehat{CBM}\)
\(\Rightarrow\widehat{ABC}=2.45^0=90^0\)
\(\Rightarrow\Delta ABC\) vuông tại B
\(\left(\dfrac{3}{2}\right)^5\cdot x=\left(\dfrac{3}{2}\right)^7\)
=>\(x=\left(\dfrac{3}{2}\right)^7:\left(\dfrac{3}{2}\right)^5=\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)
\(\left(\dfrac{2}{3}\right)^8:x=\left(\dfrac{2}{3}\right)^2\)
=>\(x=\left(\dfrac{2}{3}\right)^8:\left(\dfrac{2}{3}\right)^2=\left(\dfrac{2}{3}\right)^6=\dfrac{64}{729}\)
\(x+\left(\dfrac{2}{5}\right)^2=\dfrac{9}{10}\)
=>\(x+\dfrac{4}{25}=\dfrac{9}{10}\)
=>\(x=\dfrac{9}{10}-\dfrac{4}{25}=\dfrac{45}{50}-\dfrac{8}{50}=\dfrac{37}{50}\)
`x + (2/5)^2 = 9/10`
`=> x + 4/25 = 9/10`
`=> x = 9/10 - 4/25`
`=> x = 45/50 - 8/50`
`=> x = 37/50`
-------------------------
`(x+2/5)^2 = 9/10`
`=> (x+2/5)^2 = (3/sqrt{10})^2`
`=> x + 2/5 = 3/sqrt{10}` hoặc `x + 2/5 = -3/sqrt{10}`
`=> x = 3/sqrt{10} - 2/5` hoặc `x = -3/sqrt{10} - 2/5`
`=> x = (-4+3sqrt{10})/10` hoặc `x = -(4+3sqrt{10})/10`
Qua B, kẻ đường thẳng mn//Ax//Cy(tia Bm và tia Ax nằm trên cùng mặt phẳng chứa tia BA)
Bm//Ax
=>\(\widehat{mBA}+\widehat{xAB}=180^0\)(hai góc trong cùng phía)
=>\(\widehat{mBA}=60^0\)
Ta có: Bn//Cy
=>\(\widehat{nBC}+\widehat{BCy}=180^0\)(hai góc trong cùng phía)
=>\(\widehat{nBC}+100^0=180^0\)
=>\(\widehat{nBC}=80^0\)
\(\widehat{ABC}=180^0-60^0-80^0=40^0\)
On là phân giác của góc xOz
=>\(\widehat{xOn}=\dfrac{\widehat{xOz}}{2}=\dfrac{180^0}{2}=90^0\)
A = \(\dfrac{4}{4}\) - 3|\(x-2\)|
A = 1 - 3|\(x-2\)|
Vì |\(x-2\)| ≥ 0 \(\forall\) \(x\) ⇒ 3.|\(x-2\)| ≥ 0
Vậy 1 - 3|\(x-2\)| ≥ 1 dấu bằng xảy ra khi \(x-2\) = 0 ⇒ \(x=2\)
Vậy giá trị nhỏ nhất của A là 1 xảy ra khi \(x\) = 2
Ta có:
\(\dfrac{a}{b}< \dfrac{c}{d}\\
\Rightarrow ad< bc\\
\Rightarrow\left\{{}\begin{matrix}ad+ab< bc+ab\\ad+cd< bc+cd\end{matrix}\right.\\
\Rightarrow\left\{{}\begin{matrix}a\left(b+d\right)< b\left(a+c\right)\\d\left(a+c\right)< c\left(b+d\right)\end{matrix}\right.\\
\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b}< \dfrac{a+c}{b+d}\\\dfrac{c}{d}>\dfrac{a+c}{b+d}\end{matrix}\right.\\
\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
Vậy...
Giải thích chi tiết một chút cho bạn dễ hiểu:
+)
\(\dfrac{a}{b}< \dfrac{c}{d}\\
\Rightarrow\dfrac{a}{b}.bd< \dfrac{c}{d}.bd\\
\Rightarrow ad< bc\)
+)
\(\left\{{}\begin{matrix}a\left(b+d\right)< b\left(a+c\right)\\d\left(a+c\right)< c\left(b+d\right)\end{matrix}\right.\\
\Rightarrow\left\{{}\begin{matrix}\dfrac{a\left(b+d\right)}{b\left(b+d\right)}< \dfrac{b\left(a+c\right)}{b\left(b+d\right)}\\\dfrac{d\left(a+c\right)}{c\left(a+c\right)}< \dfrac{c\left(b+d\right)}{c\left(a+c\right)}\end{matrix}\right.\\
\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b}< \dfrac{a+c}{b+d}\\\dfrac{d}{c}< \dfrac{b+d}{a+c}\end{matrix}\right.\\
\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b}< \dfrac{a+c}{b+d}\\\dfrac{c}{d}>\dfrac{a+c}{b+d}\end{matrix}\right.
\)
Áp dụng công thức: \(1+2+...+n=\dfrac{n\left(n+1\right)}{2}\)
\(\Rightarrow1-\dfrac{1}{1+2+...+n}=1-\dfrac{1}{\dfrac{n\left(n+1\right)}{2}}=1-\dfrac{2}{n\left(n+1\right)}\)
\(=\dfrac{n\left(n+1\right)-2}{n\left(n+1\right)}=\dfrac{n^2+n-2}{n\left(n+1\right)}=\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
Do đó:
\(A=\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}.\dfrac{3.6}{4.5}...\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
\(=\dfrac{1.2.3...\left(n-1\right)}{2.3.4...n}.\dfrac{4.5.6...\left(n+2\right)}{3.4.5...\left(n+1\right)}=\dfrac{1}{n}.\dfrac{n+2}{3}=\dfrac{n+2}{3n}\)
\(\Rightarrow A=\dfrac{B}{3}\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{1}{3}\)