Các bạn giúp mình làm bài toán này nhé.Cảm ơn các bạn rất nhiều,mình đang cần lời giải gấp!
Rút gọn biểu thức:
P=1+2+2^2+2^3+........+2019
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)999x1001=(1000-1)(1000+1)=10002-12=1000000-1=999999
b)bạn viết đúng đề câu b k thế?
Chứng minh đề bài sai
Ta có
\(2^8+2=2\left(2^7+1\right)\)
=>\(A⋮2\)
A không chia hết cho 2 vì toàn bộ thừa số của A đều lẻ.
t nghĩ đề là \(2^8+1\)
Ta có: AB=BC (gt)
Suy ra: Tam giác ABC cân.
Nên (1)
Lại có \(\widehat{A-1}=\widehat{A-2}\) (2) ( Vì AC là tia phân giác của ^AA^)
Từ (1) và (2) suy ra\(\widehat{C-1}|=\widehat{A-2}\) nên BC// AD (do\(\widehat{C-2}\(ở vị trí so le trong)
~~~~ học tốt~~~~
D C F A B E P 1 2 1 2 1 2 3
Xét tứ giác PEBF có: \(\widehat{P}+\widehat{E_2}+\widehat{B}_2+\widehat{B_3}+\widehat{B_1}+\widehat{F_2}=360^o\)(1)
Tương tự với tứ giác DEBF: \(\widehat{D}+\widehat{E}+\widehat{B}_2+\widehat{B_3}+\widehat{B_1}+\widehat{F}=360^o\)(2)
Vì \(\widehat{B_2}+\widehat{D}=180^o\)=> \(\widehat{B_1}=\widehat{B_3}=\widehat{D}\)
(1) => \(\widehat{P}+2.\widehat{D}+\widehat{B_2}+\widehat{E_2}+\widehat{F_2}=360^o\Rightarrow\widehat{E_2}+\widehat{F_2}=360^o-\left(\widehat{P}+2.\widehat{D}+\widehat{B_2}\right)\)
(2) => \(3.\widehat{D}+\widehat{B_2}+\widehat{E}+\widehat{F}=360^o\Rightarrow3.\widehat{D}+\widehat{B_2}+2\left(\widehat{E_2}+\widehat{F_2}\right)=360^o\)
=> \(3.\widehat{D}+\widehat{B_2}+2\left(360^o-\left(\widehat{P}+2.\widehat{D}+\widehat{B_2}\right)\right)=360^o\)
=> \(2.\widehat{P}=360^o-\left(\widehat{D}+B_2\right)=360^o-180^o=180^o\)
=> \(\widehat{EPF}=\widehat{P}=90^o\)
\(a,\left(2x+5\right)\left(4x^2-10x+25\right)\)
\(=\left(2x+5\right)\left[\left(2x\right)^2-2x.5+5^2\right]\)
\(=\left(2x\right)^3+5^3=8x^3+125\)
\(b,\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
\(=\left(2x+3y\right)\left[\left(2x\right)^2-2x.3y+\left(3y\right)^2\right]\)
\(=\left(2x\right)^3+\left(3y\right)^3=8x^3+27y^3\)
57) (2x + 5)(4x2 - 10x + 25)
= 2x.4x2 + 2x.(-10x) + 2x.25 + 5.4x2 + 5.(-10x) + 5.25
= 8x3 - 20x2 + 50x + 20x2 - 50x + 125
= 8x3 + (-20x2 + 20x2) + (50x - 50x) + 125
= 8x3 + 125
59) làm tương tự
A B C M N P I
Trên nửa mặt phẳng bờ AM không chứa điểm B, dựng \(\Delta\)AMP sao cho \(\Delta\)AMP ~ \(\Delta\)ABC
Định nghĩa tương tự với điểm N. Gọi phân giác của ^ABM cắt AM tại I.
Từ \(\Delta\)AMP ~ \(\Delta\)ABC ta có tỉ số \(\frac{AM}{AB}=\frac{AP}{AC}\)hay \(\frac{AP}{AM}=\frac{AC}{AB}\)
Đồng thời ^MAP = ^BAC => ^PAC = ^MAB. Từ đó \(\Delta\)APC ~ \(\Delta\)AMB (c.g.c)
Suy ra ^APC = ^AMB => ^APM + ^MPC = ^AMB => ^MPC = ^AMB - ^APM = ^AMB - ^ACB (1)
Lập luận tương tự ta có ^MNB = ^AMC - ^ANM = ^AMC - ^ABC (2)
Từ (1) và (2), kết hợp với giả thiết ^AMB - ^C = ^AMC - ^B suy ra ^MPC = ^MNB
Ta lại có ^PMC = ^AMC - ^AMP = ^AMC - ^ABC = ^AMB - ^ACB = ^AMB - ^AMN = ^NMB
Do vậy \(\Delta\)BNM ~ \(\Delta\)CPM (g.g) => \(\frac{BM}{CM}=\frac{MN}{MP}\)
Mặt khác \(\Delta\)ANM ~ \(\Delta\)AMP (~\(\Delta\)ABC) => \(\frac{MN}{PM}=\frac{AN}{AM}=\frac{AB}{AC}\)
Từ đây \(\frac{BM}{CM}=\frac{AB}{AC}\) hay \(\frac{BA}{BM}=\frac{CA}{CM}\). Theo ĐL đường phân giác trong tam giác có:
\(\frac{BA}{BM}=\frac{IA}{IM}\). Do đó \(\frac{CA}{CM}=\frac{IA}{IM}\)=> CI là phân giác của ^ACM
Điều này tức là phân giác của ^ABM và ^ACM cắt nhau tại điểm I nằm trên AM => ĐPCM.
\(M=a^2+b^2\)
\(=a^2-2ab+b^2+2ab\)
\(=\left(a-b\right)^2+2ab\)
Thay \(a-b=-1\)và \(ab=2\)vào M , ta có :
\(M=\left(-1\right)^2+2.2=1+4=5\)
Vậy \(M=5\)tại \(a-b=-1\)và \(ab=2\)
bạn xem lại đề đc k
hạng tử cuối là \(2^{2019}\)
đúng ko bạn