Cho hỏi
\(\left(a+b+c+d\right)^2=???\)
\(\left(a+b-c-d\right)^2=???\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(M=x^2+x+1\)
\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4};\forall x\)
Hay \(M\ge\frac{3}{4};\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(MIN\)\(M=\frac{3}{4}\)\(\Leftrightarrow x=\frac{-1}{2}\)
b) \(N=3-2x-x^2\)
\(=-x^2-2x+3\)
\(=-\left(x^2+2x+1\right)+4\)
\(=-\left(x+1\right)^2+4\)
Vì \(-\left(x+1\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x+1\right)^2+4\le0+4;\forall x\)
Hay \(N\le4;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy MAX \(N=4\)\(\Leftrightarrow x=-1\)
Bài 2:
Vì a chia 3 dư 1 nên a có dạng \(3k+1\left(k\in N\right)\)
Vì b chia 3 dư 2 nên b có dạng \(3t+2\left(t\in N\right)\)
Ta có: \(ab=\left(3k+1\right)\left(3t+2\right)\)
\(=\left(3k+1\right).3t+\left(3k+1\right).2\)
\(=9kt+3t+6k+2\)
\(=3.\left(3kt+t+2k\right)+2\)chia 3 dư 2 .
\(\)
1a) Ta có: M = x2 + x + 1 = (x2 + x + 1/4) + 3/4 = (x + 1/2)2 + 3/4
Ta luôn có: (x + 1/2)2 \(\ge\)0 \(\forall\)x
=> (x + 1/2)2 + 3/4 \(\ge\)3/4 \(\forall\)x
Dấu "=" xảy ra khi : x + 1/2 = 0 <=> x = -1/2
Vậy Mmin = 3/4 tại x = -1/2
b) Ta có: N = 3 - 2x - x2 = -(x2 + 2x + 1) + 4 = -(x + 1)2 + 4
Ta luôn có: -(x + 1)2 \(\le\)0 \(\forall\)x
=> -(x + 1)2 + 4 \(\le\)4 \(\forall\)x
Dấu "=" xảy ra khi : x + 1 = 0 <=> x = -1
Vậy Nmax = 4 tại x = -1
Lời giải :
\(x^3-ax^2+bx-c=\left(x-a\right)\left(x-b\right)\left(x-c\right)\)
\(\Leftrightarrow x^3-ax^2+bx-c=x^3-x^2c-x^2b-x^2a+xbc+xac+xab-abc\)
\(\Leftrightarrow x^3-ax^2+bx-c=x^3-x^2\left(a+b+c\right)+x\left(ab+bc+ac\right)-abc\)
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}a+b+c=a\\ab+bc+ac=b\\ab=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b+c=0\left(1\right)\\bc+ac+1=b\left(2\right)\\ab=1\left(3\right)\end{cases}}\)
Theo \(\left(1\right)\Leftrightarrow b=-c\)
Khi đó : \(\left(3\right)\Leftrightarrow-ac=1\Leftrightarrow ac=-1\)
Khi đó : \(\left(2\right)\Leftrightarrow bc-1+1=b\)
\(\Leftrightarrow bc=b\)
\(\Leftrightarrow c=1\)
\(\Rightarrow\hept{\begin{cases}a=\frac{1}{-1}=-1\\b=0-1=-1\end{cases}}\)
Vậy \(a=b=-1;c=1\)
Lời giải :
\(\left(3-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{4}\cdot\left(3+1\right)\left(3-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{4}\cdot\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{4}\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{4}\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{4}\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\frac{1}{4}\left(3^{32}-1\right)\left(3^{32}+1\right)\)
\(=\frac{3^{64}-1}{4}\)
A B C M N P D O I S
Ta thấy M,P lần lượt là trung điểm của AB,BC => MP là đường trung bình trong \(\Delta\)ABC
=> MP // AC hay MP // AD. Xét \(\Delta\)BAD có: M là trung điểm AB, MP // AD => MP đi qua trung điểm BD
Gọi MP cắt BD tại S. Khi đó S là trung điểm BD. Ta sẽ chứng minh AI đi qua S, thật vậy:
Áp dụng hệ quả ĐL Thales có: \(\frac{ON}{AM}=\frac{OP}{BM}\left(=\frac{CO}{CM}\right)\)=> ON = OP (Vì AM = BM)
Áp dụng ĐL Melelaus cho \(\Delta\)PCN và 3 điểm A,O,I có \(\frac{IP}{IC}.\frac{ON}{OP}.\frac{AC}{AN}=1\)
Thay \(\frac{ON}{OP}=1,\frac{AC}{AN}=2\), ta được \(\frac{IP}{IC}=\frac{1}{2}\). Do đó \(\frac{IC}{IB}=\frac{1}{2}\)(Vì PC=1/2BC)
Áp dụng ĐL Melelaus cho \(\Delta\)ABC và 3 điểm M,I,D có \(\frac{MA}{MB}.\frac{IC}{IB}.\frac{DA}{DC}=1\)
Thay \(\frac{MA}{MB}=1,\frac{IC}{IB}=\frac{1}{2}\)(cmt), ta được \(\frac{DA}{DC}=2\)=> C là trung điểm AD
Xét \(\Delta\)BAD: Các trung tuyến DM, BC cắt nhau tại I => I là trọng tâm của \(\Delta\)BAD
Ta có S là trung điểm BD nên AI đi qua S. Như vậy AI,BD,MP đồng quy tại trung điểm BD (đpcm).
Gọi S là giao điểm của MP và BD
Vì P là giao điểm của MS và BC
=> Tứ giác BMCS là hình bình hành
=> \(MC//BD\)
Mà M là trung điểm của AB
=> C là trung điểm của AD
CMTT S là trung điểm của BD
=> BC; DM lần lượt là trung tuyến của tam giác ABD
Mà BC giao DM tại I
=> I là trọng tâm của tam giác ABD
Mà S là trung điểm của BD
=> A;I;S thẳng hàng
=> AI;BD;MP đồng quy tại S
Vậy AI;BD;MP đồng quy tại S
A B C D E
Trên đường thẳng AB lấy điểm E sao cho AE=AD
Xét tam giác AEC và tam giác ADC có:
AD=AE
^DAC=^EAC ( AC là phân giác ^BAD)
AC chung
=> Tam giác AEC = tam gác ADC
=>^ADC=^AEC (1)
và EC=CD
mà DC=BC
=> EC=BC
=> Tam giác EBC cân tại C
=> ^CEB=^CBE (2)
Mà ^AEC+^CEB =180^o (3)
Từ (1), (2) , (3) => góc ADC + góc CBE =180^o
Chị ơi, mình không cminh đc \(\widehat{B}=\widehat{D}\)ạ?
\(\left(x-a\right)\left(x-b\right)\left(x-c\right)=\left(x^2-ax-bx+ab\right)\left(x-c\right)\)
\(=x^3-ax^2-bx^2+abx-cx^2+acx+bcx-abc\)
\(=x^3-x^2\left(a+b+c\right)+x\left(ab+ac+bc\right)-abc\)
Nhưn vậy: \(x^3-ax^2+bx-c=x^3-x^2\left(a+b+c\right)+x\left(ab+bc+ac\right)-abc\)
Cân bằng hệ số hai vế ta có:
\(\hept{\begin{cases}a=a+b+c\left(1\right)\\b=ab+bc+ac\left(2\right)\\c=abc\left(3\right)\end{cases}}\)
(3) <=> abc-c=0 <=> c(ab-1)=0
+) TH1 c=0
\(\hept{\begin{cases}b=0\\b=ab\end{cases}}\)
Như vậy với trường hợp này: b=c=0 , với mọi a
TH2: ab-1 =0 <=> ab=1 => a, b khác 0 => c khác 0
\(\hept{\begin{cases}b+c=0\\b=1+bc+ac\end{cases}}\Leftrightarrow\hept{\begin{cases}b=-c\\-c=1-c^2-ab\end{cases}\Leftrightarrow}\hept{\begin{cases}b=-c\\c^2-c=0\end{cases}}\Leftrightarrow c=1,b=-1,a=-1\)
Do đó trường hợp này a=-1, b=-1, c=1
Kết luận;...
\(\left(x-2\right)^3-\left(x-2x^2+2x+4\right)+6\left(x-2\right)\left(x+2\right)=60\)
\(\Rightarrow x^3-6x^2+12x-8-x+2x^2-2x-4+6\left(x^2-4\right)=60\)
\(\Rightarrow x^3-6x^2+12x-8-x+2x^2-2x-4+6x^2-24=60\)
\(\Rightarrow x^3+2x^2-7x-36=60\)
\(\Rightarrow x^3+2x^2-7x-96=0\)
Sai đề không ???
(Mình giải theo cách lớp 8 nhé)
\(A=1^2-2^2+3^2-4^2+...+2015^2\)
\(=1+\left(3^2-2^2\right)+\left(5^2-4^2\right)+...+\left(2015^2-2014^2\right)\)
\(=1+\left(3-2\right)\left(3+2\right)+\left(5-4\right)\left(5+4\right)+...+\left(2015-2014\right)\left(2015+2014\right)\)
\(=1+\left(2+3\right)+\left(4+5\right)+...+\left(2014+2015\right)\)
\(=1+2+3+...+2015=B\)
\(\Leftrightarrow A=B\)
\(\left(a+b+c+d\right)^2=\left(\left(a+b\right)+\left(c+d\right)\right)^2\)
\(=\left(a+b\right)^2+2\left(a+b\right)\left(c+d\right)+\left(c+d\right)^2\)
\(=a^2+b^2+c^2+d^2+2ab+2cd+2ac+2ad+2bc+2bd\)
Câu dưới em làm tương tự
B)(A+B-C-D)2= (A+B)2 -2 (A+B).(C-D) +(C-D)2
= A2 +B2 +C2 +D2 + 2AB-2CD- 2AC +2AD - 2BC +2BD
cÁC BẠN NHỚ K ĐÚNG CHO MÌNH RỒI MÌNH K LẠI CHO.nHỚ MỖI BẠN 3K