Tìm x,y,z thuộc Z biết
x+y+z=3=x3+y3+z3=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D H E I
a) Mình nghĩ đề đúng phải là: CMR: \(\frac{HB}{HC}=\frac{IB^2}{IA^2}\)
Xét \(\Delta\)BEC có: Đường trung tuyến BA; BA vuông góc CE (tại A) => \(\Delta\)BEC cân tại B
=> ^BEC = ^BCE hay ^IEA = ^ACB. Mà ^ACB = ^IAB (=^HAB) (Cùng phụ ^HAC) nên ^IEA = ^IAB
Xét \(\Delta\)BAI và \(\Delta\)AEI có: ^AIE chung; IAB = ^IEA => \(\Delta\)BAI ~ \(\Delta\)AEI (g.g)
=> \(\frac{IB}{IA}=\frac{AB}{EA}\)=> \(\frac{IB}{IA}=\frac{AB}{AC}\)(Do AE=AC) => \(\frac{IB^2}{IA^2}=\frac{AB^2}{AC^2}\)
Dễ thấy \(\Delta\)BAH ~ \(\Delta\)ACH (g.g) => \(\frac{S_{BAH}}{S_{ACH}}=\frac{AB^2}{AC^2}\)
Do đó: \(\frac{IB^2}{IA^2}=\frac{S_{BAH}}{S_{ACH}}\). Lại có: \(\frac{S_{BAH}}{S_{ACH}}=\frac{HB.AH}{HC.AH}=\frac{HB}{HC}\)=> \(\frac{IB^2}{IA^2}=\frac{HB}{HC}\)(đpcm).
b) Theo ĐL đường phân giác trong tam giác thì \(\frac{DB}{DC}=\frac{AB}{AC}\Rightarrow\frac{AB}{AC}=\frac{15}{20}=\frac{3}{4}\Rightarrow AC=\frac{4}{3}AB\)
Áp dụng ĐL Pytago cho \(\Delta\)ABC vuông tại A: \(AB^2+AC^2=BC^2\). Thay AC=4/3.AB, ta có:
\(AB^2+\frac{16}{9}AB^2=BC^2=1225\)\(\Rightarrow AB^2=441\) (cm)
Theo hệ thức lượng: \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{441}{35}=12,6\)(cm)
Suy ra: \(HD=DB-BH=15-12,6=2,4\); \(CH=BC-BH=22,4\)
Mặt khác \(\Delta\)BAI ~ \(\Delta\)AEI (cmt) => \(IA^2=IB.IE\) (1)
\(\Rightarrow IA^2=IB^2+IB.BE=IB^2+IB.BC=IB^2+35.IB\)
Lại có: \(\frac{IB^2}{IA^2}=\frac{HB}{HC}\)(câu a) nên \(\frac{IB^2}{IB^2+35.IB}=\frac{HB}{HC}=\frac{12,6}{22,4}=\frac{9}{16}\)
Đặt IB=x (x>0) , ta có phương trình sau:
\(\frac{x^2}{x^2+35x}=\frac{9}{16}\Rightarrow9x^2+315x=16x^2\Leftrightarrow7x^2-315x=0\)
\(\Leftrightarrow7x\left(x-45\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=45\end{cases}}\)(loại TH x=0 vì x > 0)
=> \(IB=45\)(cm) => IE = IB + BE = IB + BC = 45 + 35 = 80 (cm). Thế vào (1), ta được:
\(IA^2=45.80\Rightarrow IA=60\)(cm)
Ta sẽ có: \(S_{BAE}=S_{ABC}=\frac{AB.AC}{2}=\frac{AB.\frac{4}{3}AB}{2}=294\)(cm2)
\(S_{ABI}=\frac{BH.AI}{2}=\frac{12,6.60}{2}=378\)(cm2); \(S_{AID}=\frac{HD.AI}{2}=\frac{2,4.60}{2}=72\)(cm2)
Theo t/c diện tích miền đa giác: \(S_{AEID}=S_{BAE}+S_{ABI}+S_{AID}=294+378+72=744\)(cm2)
Vậy \(S_{AEID}=744\)cm2.
A B C H E F O
a) \(\Delta\)ABC vuông tại A có trung tuyến AO nên ^OAC = ^OCA. Do ^OCA = ^BAH (Cùng phụ ^HAC)
Nên ^OAC = ^BAH = ^ AEF (Do tứ giác AEHF là hcn)
Mà ^AEF + ^AFE = 900 => ^OAC + ^AFE = 900 => OA vuông góc EF (đpcm).
b) Biến đổi tương đương:
\(BE\sqrt{CH}+CF\sqrt{BH}=AH\sqrt{BC}\)
\(\Leftrightarrow BE\sqrt{BC.CH}+CF\sqrt{BC.BH}=AB.BC\)(Nhân mỗi vế với \(\sqrt{BC}\))
\(\Leftrightarrow BE\sqrt{AC^2}+CF\sqrt{AB^2}=AB.BC\) (Hệ thức lương)
\(\Leftrightarrow BE.AC+CF.AB=AB.BC\)
\(\Leftrightarrow BH.AH+CH.AH=AB.BC\)(Vì \(\Delta\)EBH ~ \(\Delta\)HAC; \(\Delta\)FHC ~ \(\Delta\)HBA)
\(\Leftrightarrow AH\left(BH+CH\right)=AB.BC\)
\(\Leftrightarrow AH.BC=AB.AC\) (luôn đúng theo hệ thức lượng)
Vậy có ĐPCM.
Câu trả lời là không. Và lời giải khá đơn giản. Thay dấu cộng bằng số 1 và dấu trừ bằng - 1. Xét tích tất cả các số trên bảng vuông. Khi đó, qua mỗi phép biến đổi, tích này không thay đổi (vì sẽ đổi dấu 4 số). Vì vậy, cho dù ta thực hiện bao nhiêu lần, từ bảng vuông (1, 15) sẽ chỉ đưa về các bảng vuông có số lẻ dấu -, có nghĩa là không thể đưa về bảng có toàn dấu cộng.
Bạn tham khảo nha
Chào bạn ! Mình nghĩ là từ trước đến giờ chắc là có vài lần báo cáo câu trả lời của bạn hoặc có người k sai cho bạn !
* Có 2 trường hợp hiếm gặp :
1 . Điểm hỏi đáp của bạn đã bị ai đó hack mất rồi !
2 . k nhiều quá cùng một lúc khiến máy bị lỗi và ko thể cộng điểm được
Mong thông tin này sẽ giúp ích cho bạn nhiều hơn !
Và còn 1 trường hợp mà ít người gặp là
BẠN ĐÃ KO VÀO ONLINE MATH MỘT THỜI GIAN LÂU NÊN ĐIỂM TRỞ LEN CON SỐ 0 > NHƯNG NGƯỢC LẠI ĐIỂM THÁNG VẪN CÒN
MÌNH NGHĨ LÀ DO ĐIỂM TUẦN KO CÓ 1 ĐIỂM NÀO NÊN ĐIỂM THÁNG CŨNG KO ĐƯỢC CỘNG VÀO LÀ MẤY !
tìm số tự nhiên có 2 chữ số biết rằng số đó gấp lên 5 lần tổng các chữ số của nó
sao k nhìn đc câu trả lời vậy ạ??