K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2019

n chia 7 dư 4 thì n có dạng \(7k+4\)

Ta có:

\(n^2=\left(7k+4\right)^2=49k^2+56k+14+2\) chia 7 dư 2

\(n^3=\left(7k+3\right)^3=343k^3+147k^2+189k+21+6\) chia 7 dư 6

12 tháng 7 2019

zZz Cool Kid zZz ơi bạn lộn phần \(n^3\)kìa

12 tháng 7 2019

\(M=2\left(a^3+b^3\right)-3\left(a^2+b^2\right)\)

\(\Leftrightarrow M=2\left[\left(a+b\right)\left(a^2-ab+b^2\right)\right]-3\left(a^2+b^2\right)\)

\(\Leftrightarrow M=2\left[\left(a^2-ab+b^2\right)\right]-3\left(a^2+b^2\right)\)

\(\Leftrightarrow M=2a^2-2ab+2b^2-3a^2-3b^2\)

\(\Leftrightarrow M=-a^2-2ab-b^2\)

\(\Leftrightarrow M=-\left(a+b\right)^2\)

12 tháng 7 2019

bạn lấy vế phải trừ vế trái  , rồi nhóm lại ví dụ nhóm cái y+z-2x mũ 2 với y-z mũ 2 , rồi áp dụng hằng đẳng thức xong suy ra ... 

12 tháng 7 2019

xin lỗi vì không trình bài đủ nha , nó dài quá mình viết ra ko được , sr bạn nha

11 tháng 7 2019

6x2 - ( 2x + 5 ).( 3x - 2 ) = 7

\(\Leftrightarrow\) 6x2 - ( 6x2 - 4x + 15x  - 10 ) = 7

\(\Leftrightarrow\) 6x2 - ( 6x2 + 11x - 10 ) = 7

\(\Leftrightarrow\) 6x2 - 6x2 - 11x + 10 = 7

\(\Leftrightarrow\) -11x = 7 -10

\(\Leftrightarrow\) - 11x = -3

\(\Leftrightarrow\)  \(x=\frac{3}{11}\)

Vậy x = \(\frac{3}{11}\)

11 tháng 7 2019

6x2 - (2x + 5)(3x - 2) = 7

<=> 6x2 - 6x2 - 11x + 10 = 7

<=> -11x + 10 = 7

<=> -11x = 7 - 10

<=> -11x = -3

<=> x = 3/11

=> x = 3/11

11 tháng 7 2019

\(=>x^3+6x^2+12x+8-x^3+27+6x^2+12x+6=15\)

\(=>12x^2+24x+41-15=0\)

\(=>12x^2+24x+26=0\)

\(=>12\left(x^2+2x+1\right)+14=0\)

\(=>12\left(x+1\right)^2+14=0\)

\(=>2[6\left(x+1\right)^2+7]=0\)

\(=>6\left(x+1\right)^2+7=0\)

Mà \(\left(x+1\right)^2\ge0\)nên \(6\left(x+1\right)^2+7>0\)

Vậy ko có giá trị x nào thỏa mãn đề bài

11 tháng 7 2019

a)Đặt A= \(x^2+2x+11=\left(x+1\right)^2+10\)

vì \(\left(x+1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x+1\right)^2+11\ge11;\forall x\)

Hay \(A\ge11>0;\forall x\)

phần b và c mình sẽ giải ra hằng đẳng thức lập luận tương tự phần a

b)\(4x^2+8x+5\)

 \(\left(2x\right)^2+2.2x.2+2^2+1\)

\(=\left(2x+2\right)^2+1\)

c) \(x^2+x+2=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+2\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\)

11 tháng 7 2019

a) \(x^2+2x+11\)

\(=\left(x^2+2x+1\right)+10\)

\(=\left(x+1\right)^2+10\ge10\)

\(\text{Vì }\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+10\ge10\Rightarrow\left(x+1\right)^2+10>0\)

\(\Leftrightarrow x^2+2x+11>0\)

Vậy biểu thước x2+2x+11 luôn có giá trị dương

11 tháng 7 2019

â) \(\left(5-x\right)\left(2+3x\right)=4-9x^2\) 

   \(\left(5-x\right)\left(2+3x\right)=\left(2+3x\right)\left(2-3x\right)\)

   \(5-x=2-3x\) 

  \(2x=-3\) 

 \(x=\frac{-3}{2}\) 

Vậy ......

b) \(25-x^2=4x\left(5+x\right)\)

    \(\left(5+x\right)\left(5-x\right)=4x\left(5+x\right)\) 

   \(5-x=4x\) 

   \(5x=5\)

  x=1

Vậy......

11 tháng 7 2019

a) \(\left(5-x\right)\left(2+3x\right)=4-9x^2\)

<=> \(\left(5-x\right)\left(2+3x\right)+9x^2-4=0\)

<=> \(\left(5-x\right)\left(2+3x\right)+\left(3x-2\right)\left(3x+2\right)=0\)

<=> \(\left(2+3x\right)\left(3x-2+5-x\right)=0\)

<=> \(\left(2+3x\right)\left(2x+3\right)=0\)

<=> \(\orbr{\begin{cases}2x+3=0\\3x+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{3}{2}\\x=-\frac{2}{3}\end{cases}}\)

b) \(25-x^2=4x\left(5+x\right)\)

<=> \(25-x^2-4x\left(5+x\right)=0\)

<=> \(\left(5-x\right)\left(5+x\right)-4x\left(5+x\right)=0\)

<=> \(\left(5+x\right)\left(5-x-4x\right)=0\)

<=> \(\left(5+x\right)\left(5-5x\right)=0\)

<=> \(\orbr{\begin{cases}5+x=0\\5-5x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-5\\x=1\end{cases}}\)

10 tháng 7 2019

\(3x^2+x+11=0\)

\(x^2+x+\frac{1}{4}+2x^2+\frac{43}{4}=0\) 

\(\left(x+\frac{1}{2}\right)^2+2x^2+\frac{43}{4}=0\) 

Mà \(\left(x+\frac{1}{2}\right)^2+2x^2+\frac{43}{4}\ge\frac{43}{4}\forall x\)

=> PT vô nghiêm

\(3x^2+x+11=0\)

\(\Leftrightarrow x^2+\frac{1}{3}x+\frac{11}{3}=0\)

\(\Leftrightarrow x^2+2\frac{1}{3}.\frac{1}{2}x+\frac{1}{36}+\frac{131}{36}=0\)

\(\Leftrightarrow\left(x+\frac{1}{6}\right)^2=-\frac{131}{36}\left(voly\right)\)

=> Phương Trình Vô Nghiệm