Cho A= \(\frac{x-y}{x+y}\) B=\(\frac{y-z}{y+z}\)
C=\(\frac{z-x}{z+x}\)
chứng minh rằng (1+A)(1+B)(1+C)=(1-A)(1-B)(1-C)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C 6cm 3cm
a)AB+AC=AC
=>3+AC=6
=>AC=3(cm)
AC=AB
b)b là trung điểm cảu AC vì:
AB=AC=3=1/2 AC
Với p = 2 => p + 11 = 2 + 11 = 13 là số nguyên tố
p + 17 = 2 + 17 = 19 là số nguyên tố (thỏa mãn)
Với p > 2 => p có dạng 2k + 1 (k ∈ N*)
+) p + 11 = 2k + 1 + 11 = 2k + 12 chia hết cho 2 và lớn hơn 2
=> p + 11 là hợp số (loại)
+) p + 17 = 2k + 1 + 17 = 2k + 18 chia hết cho 2 và lớn hơn 2
=> p + 17 là hợp số (loại)
Vậy p = 2
P/s: ko chắc
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, Tiếng Việt và Ngữ Văn hoặc Tiếng Anh, và KHÔNG ĐƯA các câu hỏi linh tinh gây nhiễu diễn đàn. OLM có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Hình như Quang Hải không đá đc hôm nay đâu.Nghe nói Quang Hải bị gì ở chân ý.Mong là không sao,tớ không xem nhé.
Thay A,B,C vào vế trái , ta có :
\(VT=\left(1+\frac{x-y}{x+y}\right)\left(1+\frac{y-z}{y+z}\right)\left(1+\frac{z-x}{z+x}\right)\)
\(=\left(\frac{x+y+x-y}{x+y}\right)\left(\frac{y+z+y-z}{y+z}\right)\left(\frac{z+x+z-x}{z+x}\right)\)
\(=\frac{2x}{x+y}.\frac{2y}{y+z}.\frac{2z}{z+X}\) \(=\frac{8xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)} \) (1)
Thay A,B,C vào vế phải , ta có
\(VP=\left(1-\frac{x-y}{x+y}\right)\left(1-\frac{y-z}{y+z}\right)\left(1-\frac{z-x}{z+x}\right)\)
\(=\left(\frac{x+y-x+y}{x+y}\right)\left(\frac{y+z-y+z}{y+z}\right)\left(\frac{z+x-z+x}{z+x}\right)\)
\(=\frac{2y}{x+y}.\frac{2z}{y+z}.\frac{2x}{z+x}=\frac{8xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) (2)
Từ (1),(2) => đpcm