3x(x+7)+21-3x2=0. tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x\left(3x+7\right)-15x^2=70\)
\(\Leftrightarrow15x^2+35x-15x^2=70\)
\(\Leftrightarrow35x=70\)
\(\Leftrightarrow x=2\)
#)Giải :
Ta có : \(a^4+b^4+c^4+d^4=4abcd\)
\(\Leftrightarrow a^4-2a^2b^2+b^4+c^4-2c^2d^2+d^4+2a^2b^2-4abcd+2c^2d^2=0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(c^2-d^2\right)+2\left(ab-cd\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a^2=b^2\\c^2=d^2\\ab=cd\end{cases}}\)
Do a, b, c, d > 0
\(\Leftrightarrow a=b=c=d\left(đpcm\right)\)
Ta có:
\(a^3+b^3+c^3=3abc\)
\(\Rightarrow\left(a^3+b^3\right)+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3+3abc=0\)
\(\Rightarrow[\left(a+b\right)^3+c^3]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)[\left(a+b\right)^2-\left(a+b\right)c+c^2]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc-3ab\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a+b+c=0\left(1\right)\\a^2+b^2+c^2-ab-bc-ac=0\left(2\right)\end{cases}}\)
Từ (1) => a = b = c (vì a ; b ; c là các số dương)
Giải (2) ta có:
\(2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Rightarrow2a^2+2b^2-2ab-2bc-2ac=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
Vì \(\left(a-b\right)^2\ge\forall a,b\)
\(\left(a-c\right)^2\ge\forall a,c\)
\(\left(b-c\right)^2\ge\forall b,c\)
\(\Rightarrow\)Ta có: \(a-b=a-c=b-c\Rightarrow a=b=c\)
Ta có: a2 + b2 = 2ab
=> a2 + b2 - 2ab = 0
=> (a - b)2 = 0
=> a - b = 0
=> a = b (Đpcm)
Ta có: \(x+y=2,5=\frac{5}{2}\)
\(\Rightarrow\left(x+y\right)^2=\frac{25}{4}\)
Ta có:
\(A=\frac{x}{y}+\frac{y}{x}\)
\(=\frac{x.x}{x.y}+\frac{y.y}{y.x}\)
\(=\frac{x^2}{xy}+\frac{y^2}{xy}\)
\(=\frac{x^2+y^2}{xy}\)
\(=\frac{\frac{25}{4}}{1}=\frac{25}{4}\)
g) \(\left(2x-1\right)^2-\left(2x+4\right)^2=0\)
\(\Leftrightarrow\left(2x-1+2x+4\right)\left(2x-1-2x-4\right)=0\)
\(\Leftrightarrow-5\left(4x+3\right)=0\)
\(\Leftrightarrow4x+3=0\)
\(\Leftrightarrow4x=-3\)
\(\Leftrightarrow x=\frac{-3}{4}\)
Vậy tập nghiệm của pt là \(S=\left\{\frac{-3}{4}\right\}\)
h) \(\left(2x-3\right)\left(3x+1\right)-x\left(6x+10\right)=30\)
\(\Leftrightarrow3x\left(2x-3\right)+\left(2x-3\right)-6x^2-10x=30\)
\(\Leftrightarrow6x^2-9x+2x-3-6x^2-10x=30\)
\(\Leftrightarrow-9x+2x-3-10x=30\)
\(\Leftrightarrow-17x-3=30\)
\(\Leftrightarrow-17x=33\)
\(\Leftrightarrow x=\frac{-33}{17}\)
Vậy tập nghiệm của pt là \(S=\left\{\frac{-33}{17}\right\}\)
a) \(\left(3x-2\right)\left(3x-1\right)=\left(3x+1\right)^2\)
<=> \(9x^2-9x+2=9x^2+6x+1\)
<=> \(15x=1\) <=> \(x=\frac{1}{15}\)
b) \(\left(4x-1\right)\left(x+1\right)=\left(2x-3\right)^2\)
<=> \(4x^2+3x-1=4x^2-12x+9\)
<=> \(15x^2=10\) <=> \(x=\frac{2}{3}\)
c) \(\left(5x+1\right)^2=\left(7x-3\right)\left(7x+2\right)\) <=> \(25x^2+10x+1=49x^2-7x-6\)
<=> \(24x^2-17x-7=0\) <=> \(24x^2-24x+7x-7=0\)
<=> \(\left(24x+7\right)\left(x-1\right)=0\) <=> \(\orbr{\begin{cases}x=-\frac{7}{24}\\x=1\end{cases}}\)
d) (4 - 3x)(4 + 3x) = (9x - 3)(1 - x)
<=> 16 - 9x2 = 12x - 9x2 - 3
<=> 12x = 19
<=> x = 19/12
e) x(x + 1)(x + 2)(x + 3) = 24
<=> (x2 + 3x)(x2 + 3x + 2) = 24
<=> (x2 + 3x)2 + 2(x2 + 3x) - 24 = 0
<=> (x2 + 3x)2 + 6(x2 + 3x) - 4(x2 + 3x) - 24 = 0
<=> (x2 + 3x + 6)(x2 + 3x - 4) = 0
<=> \(\orbr{\begin{cases}x^2+3x+6=0\\x^2+3x-4=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x+\frac{3}{2}\right)^2+\frac{15}{4}=0\left(vn\right)\\\left(x+4\right)\left(x-1\right)=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-4\\x=1\end{cases}}\)
g) (7x - 2)2 = (7x - 3)(7x + 2)
<=> 49x2 - 28x + 4 = 49x2 - 7x - 6
<=> 21x = 10 <=> x = 10/21
\(3x\left(x+7\right)+21-3x^2=0\)
\(\Leftrightarrow3x^2+21x+21-3x^2=0\)
\(\Leftrightarrow21x+21=0\)
\(\Leftrightarrow21\left(x+1\right)=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)