K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(-6,5).5,7+5,7.(-3,5)

=5,7[(-6,5)+(-3,5)]

=5,7.(-10)

=-57

9 tháng 12 2019

=> \(y_A=-\frac{1}{2}x_A\)

=> \(2-m^2=-\frac{m^2}{2}\)

=> \(4-2m^2+m^2=0\)

<=> \(4-m^2=0\Leftrightarrow\orbr{\begin{cases}m=2\\m=-2\end{cases}}\)

chuc ban hoc tot

9 tháng 12 2019

Ta có:

\(\frac{x}{x^2+x+1}=-\frac{1}{4}\Rightarrow x^2+x+1=-4x\)

\(\Rightarrow x^2+5x+1=0\Rightarrow x^2=5x+1\)

Với x2=5x+1 ta được:

\(P=\frac{2x\left(5x+1\right)^2+10\left(5x+1\right)^2+2x\left(5x+1\right)-7\left(5x+1\right)-35x+2009}{2029+60x+11\left(5x+1\right)-5x\left(5x+1\right)-\left(5x+1\right)^2}\)

\(P=\frac{2x\left(25x^2+10x+1\right)+10\left(25x^2+10x+1\right)+10x^2+2x-35x-7-35x+2009}{2029+60x+55x+11-25x^2-5x-\left(25x^2+10x+1\right)}\)

\(P=\frac{50x^3+20x^2+2x+250x^2+100x+10+10x^2+2x-35x-7-35x+2009}{2029+60x+55x+11-25x^2-5x-25x^2-10x-1}\)

\(P=\frac{50x^3+280x^2+34x+2012}{2039+100x-50x^2}\)

\(P=\frac{50x\left(5x+1\right)+280\left(5x+1\right)+34x+2012}{2039+100x-50\left(5x+1\right)}\)

\(P=\frac{250x^2+50x+1400x+280+34x+2012}{2039+100x-250x-50}\)

\(P=\frac{250\left(5x+1\right)+50x+1400x+280+34x+2012}{1989-150x}\)

\(P=\frac{1250x+250+50x+1400x+280+34x+2012}{1989-150x}\)

9 tháng 12 2019

bài trên sai rồi

9 tháng 12 2019

\(a.=\left(50-50\right)+\left(2+15\right)-17\)

\(=0+17-17\)

\(=0\)

9 tháng 12 2019

\(d)=815+95-815-45\)

\(=0+95-45\)

\(=50\)

Giả sử  \(2\le c\le b\le a\)   (1)

Từ abc < ab + bc + ca chia 2 vế cho abc ta được :

\(1< \frac{1}{c}+\frac{1}{b}+\frac{1}{a}\)   (2)

Từ (1) ta có :

\(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}\le\frac{3}{c}\)  nên   \(1< \frac{3}{c}\Rightarrow c< 3\Rightarrow c=2\)

Thay c = 2 vào (2) ta có :

\(\frac{1}{2}< \frac{1}{a}+\frac{1}{b}\le\frac{2}{b}\Rightarrow b\le4\)

Vì b là số nguyên tố nên \(\orbr{\begin{cases}b=2\\b=3\end{cases}}\)

Với \(b=2\Rightarrow\frac{1}{2}< \frac{1}{a}+\frac{1}{2}\Rightarrow\frac{1}{a}>0\) đúng với mọi số nguyên tố a 

Với  \(b=3\Rightarrow\frac{1}{2}< \frac{1}{a}+\frac{1}{3}\Rightarrow\frac{1}{a}>\frac{1}{6}\Rightarrow a< 6\)

Mà a là số nguyên tố nên \(\orbr{\begin{cases}a=3\\a=5\end{cases}}\)

Vậy ( a ; b ; c ) = ( 5 ; 3 ; 2 ) ; ( 3 ; 3 ; 2 ) ; ( a ; 2 ; 2 ) với a là số nguyên tố bất kì

9 tháng 12 2019

KHông mất tính tổng quát: g/s: \(a\ge b\ge c\)

=> \(ab+bc+ac\le ab+ba+ab=3ab\)

Theo đề bài: \(abc< ab+bc+ac\)

=> \(abc< 3ab\Leftrightarrow c< 3\)

mà c là số nguyên tố => c = 2

=> \(2ab< ab+2b+2a\)

=> \(ab< 2\left(a+b\right)\)mặt khác \(a\ge b\)

=> \(ab< 2\left(a+a\right)\Leftrightarrow ab< 4a\Leftrightarrow b< 4\)

Ta có b là số nguyên tố => b = 2 hoặc b = 3

Với b = 2 => \(4a< 2a+4+2a\)=> 0 < 4 luôn đúng với mọi a

Với b = 3 => \(6a< 3a+6+2a\)=> a < 6 . Vì a là số nguyên tố  lớn hơn  hoặc bằng b =>  a = 3 hoặc a = 5

Vậy có các bộ số : ( a; 2; 2) với a nguyên tố bất kì; ( 3; 3; 2) ; ( 5; 3; 2) Và các hoán vị

\(\frac{x-3}{3}=\frac{5-3x}{-11}\)

\(\Leftrightarrow-11\left(x-3\right)=3\left(5-3x\right)\)

\(\Leftrightarrow-11x+33=15-9x\)

\(\Leftrightarrow2x=18\)

\(\Leftrightarrow x=9\)

vậy x=9

9 tháng 12 2019

Câu hỏi của Nguyễn Trung Hiếu - Toán lớp 9 - Học toán với OnlineMath

9 tháng 12 2019

Câu hỏi của hoàng thị huyền trang - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo nhé!