Bài 3 ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ DE, DF lần lượt vuông góc với AB, AC tại E, F.
Ta có \(\dfrac{AD^2}{BD^2}=\dfrac{\left(ED\sqrt{2}\right)^2}{BD^2}=\dfrac{2ED^2}{BD^2}=2\left(\dfrac{ED}{BD}\right)^2\) \(=2\left(\dfrac{AC}{BC}\right)^2\)
và \(\dfrac{AD^2}{DC^2}=\dfrac{\left(DF\sqrt{2}\right)^2}{DC^2}=\dfrac{2DF^2}{DC^2}=2\left(\dfrac{DF}{DC}\right)^2=2\left(\dfrac{AB}{BC}\right)^2\)
\(\Rightarrow\dfrac{AD^2}{BD^2}+\dfrac{AD^2}{DC^2}=2\left(\dfrac{AC}{BC}\right)^2+2\left(\dfrac{AB}{BC}\right)^2\) \(=2\left(\dfrac{AB^2+AC^2}{BC^2}\right)\) \(=2\)
\(\Rightarrow\dfrac{1}{BD^2}+\dfrac{1}{CD^2}=\dfrac{2}{AD^2}\), ta có đpcm.
Mình gửi đáp án rồi nhé, bạn vào trang cá nhân của mình xem.
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{EAB}\) chung
Do đó: ΔAEB~ΔAFC
b: Ta có: ΔAEB~ΔAFC
=>\(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
=>\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
\(\widehat{EAF}\) chung
Do đó: ΔAEF~ΔABC
=>\(\widehat{AFE}=\widehat{ACB}\)
c: Gọi O là trung điểm của AK
Ta có: BICK là hình bình hành
=>BI//CK và BK//CI
ta có: BI//CK
BI\(\perp\)AC
Do đó: CK\(\perp\)CA
=>ΔCKA vuông tại C
=>C nằm trên đường tròn đường kính AK
=>C nằm trên (O)(1)
Ta có: CI//BK
CI\(\perp\)BA
Do đó: BK\(\perp\)BA
=>ΔBKA vuông tại B
=>B nằm trên đường tròn đường kính AK
=>B nằm trên (O)(2)
Từ (1),(2) suy ra ABKC là tứ giác nội tiếp đường tròn (O), đường kính AK
Gọi H là giao điểm của AI với BC
Xét ΔABC có
BE,CF là các đường cao
BE cắt CF tại I
Do đó: I là trực tâm của ΔABC
=>AI\(\perp\)BC tại H
Xét (O) có
\(\widehat{CBK}\) là góc nội tiếp chắn cung CK
\(\widehat{CAK}\) là góc nội tiếp chắn cung CK
Do đó: \(\widehat{CBK}=\widehat{CAK}\)
mà \(\widehat{CBK}=\widehat{ICB}\)(hai góc so le trong, IC//BK)
và \(\widehat{ICB}=\widehat{FAI}\left(=90^0-\widehat{ABC}\right)\)
nên \(\widehat{FAI}=\widehat{CAK}\)
Xét ΔFAI vuông tại F và ΔCAK vuông tại C có
\(\widehat{FAI}=\widehat{CAK}\)
Do đó: ΔFAI~ΔCAK
=>\(\dfrac{FA}{CA}=\dfrac{FI}{CK}\)
=>\(\dfrac{FA}{FI}=\dfrac{CA}{CK}\)
=>\(\dfrac{FI}{FA}=\dfrac{CK}{CA}\)
c: Ta có: KD=KA
mà ΔAKD vuông tại K
nên ΔAKD vuông cân tại K
=>\(\widehat{KAD}=\widehat{KDA}=45^0\)
Ta có: ED//AK
AK\(\perp\)BC
Do đó: ED\(\perp\)BC
Xét tứ giác AEDB có \(\widehat{EAB}+\widehat{EDB}=90^0+90^0=180^0\)
nên AEDB là tứ giác nội tiếp
=>\(\widehat{ADB}=\widehat{AEB}\)
=>\(\widehat{AEB}=45^0\)
Xét ΔAEB vuông tại A có \(\widehat{AEB}=45^0\)
nên ΔAEB vuông cân tại A
=>AE=AB
Gọi A� là tử (14x2−8x+914�2−8�+9)
C� là mẫu (3x2+6x+93�2+6�+9)
Ta có:A� =14x2−8x+914�2−8�+9
⇒Amin⇒����=557557
Ta có: C�=3x2+6x+93�2+6�+9
⇒Cmin⇒����=6
Suy ra Bmin����=(557)6(557)6=55425542
Vậy GTNN của B là 5542
Do M là trung điểm AF \(\Rightarrow AM=\dfrac{1}{2}AF=\dfrac{9}{2}\left(cm\right)\)
\(CE=AC-AE=10\left(cm\right)\)
Theo giả thiết, AF song song BC nên AM song song CN, áp dụng định lý talet:
\(\dfrac{AM}{CN}=\dfrac{AE}{CE}\) \(\Rightarrow CN=\dfrac{AM.CE}{AE}=\dfrac{\dfrac{9}{2}.10}{5}=9\left(cm\right)\)
Mà \(BC=18\left(cm\right)\Rightarrow CN=\dfrac{1}{2}BC\)
\(\Rightarrow N\) là trung điểm của BC
1:
a: Xét ΔABC có AD là phân giác
nên \(\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{3}{4}\)
=>\(\dfrac{DB}{3}=\dfrac{DC}{4}\)
mà DB+DC=20cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{20}{7}\)
=>\(DB=\dfrac{20}{7}\cdot3=\dfrac{60}{7}\left(cm\right);DC=4\cdot\dfrac{20}{7}=\dfrac{80}{7}\left(cm\right)\)
b: Xét ΔABC có \(AB^2+AC^2=BC^2\)
nên ΔABC vuông tại A
c: \(\dfrac{DC}{BC}=\dfrac{80}{7}:20=\dfrac{4}{7}\)
=>\(S_{ADC}=\dfrac{4}{7}\cdot S_{ABC}\)
=>\(\dfrac{S_{ADC}}{S_{ABC}}=\dfrac{4}{7}\)
2:
a: Xét ΔABC có \(AB^2+AC^2=BC^2\)
nên ΔABC vuông tại A
b:
ta có: MN\(\perp\)AB
AC\(\perp\)AB
Do đó: MN//AC
Xét ΔABC có MN//AC
nên \(\dfrac{MN}{AC}=\dfrac{BM}{BC}\)
=>\(\dfrac{MN}{14,4}=\dfrac{1}{2}\)
=>MN=14,4:2=7,2(cm)
c: Xét ΔBAC có MN//AC
nên ΔBMN~ΔBCA
=>\(\dfrac{S_{BMN}}{S_{BCA}}=\left(\dfrac{BM}{BC}\right)^2=\dfrac{1}{4}\)