phân tích đa thức (2a+b)2 -(2b+a)2 thành nhân tử
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4-x^2+2x\\ =\left(-x^2+2x-1\right)+5\\ =-\left(x^2-2x+1\right)+5\\ =-\left(x-1\right)^2+5\)
Ta có: \(-\left(x-1\right)^2\le0\forall x\)
\(=>-\left(x-1\right)^2+5\le5\forall x\)
Dấu "=" xảy ra: `x-1=0<=>x=1`
Vậy: ...
a: Khi x=2 và y=-10 thì \(A=3\cdot2^2+4\cdot2\cdot\left(-10\right)-2\cdot\left(-10\right)^2\)
=12-80-200
=12-280=-268
Khi x=2 và y=-10 thì \(B=-2^2+3\cdot\left(-10\right)^2-4\cdot2\cdot\left(-10\right)\)
=-4+300+80
=380-4=376
A B C H D E M K I
a/
Xét tg vuông AME và tg vuông AHC có
AE=AC (gt)
\(\widehat{EAM}+\widehat{HAC}=\widehat{ACH}+\widehat{HAC}=90^o\Rightarrow\widehat{EAM}=\widehat{ACH}\)
=> tg AME = tg AHC (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)
=> AM=AH
C/m tương tự khi xét tg vuông AKD và tg vuông AHB
=> DK=AH
=> DK=EM
b/
\(DK\perp AH\left(gt\right);EM\perp AH\left(gt\right)\) => DK//EM (cùng vg với AH)
DK=EM (cmt)
=> EKDM là hình bình hành (Tứ giác có cặp cạnh đối // và bằng nhau là hbh)
=> IE=ID (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
\(\left(x+y\right)^2+\left(x-y\right)^2+\left(x+y\right)\left(x-y\right)\\ =\left(x^2+2xy+y^2\right)+\left(x^2-2xy+y^2\right)+\left(x^2-y^2\right)\\ =x^2+2xy+y^2+x^2-2xy+y^2+x^2-y^2\\ =3x^2+y^2\)
Ta có: \(\left\{{}\begin{matrix}3x^2\ge0\forall x\\y^2\ge0\forall y\end{matrix}\right.=>3x^2+y^2\ge0\forall x,y\)
=> Biểu thức không âm với mọi x và y
`(x+y)^2 + (x - y)^2 + (x+y)(x - y)`
`= x^2 + 2xy + y^2 + x^2 - 2xy + y^2 + x^2 - y^2`
`= 3x^2 + y^2`
Ta có: \(\left\{{}\begin{matrix}x^2\ge0\\y^2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x^2\ge0\\y^2\ge0\end{matrix}\right.\)
`=> 3x^2 + y^2 ≥ 0`
Vậy đa thức trên luôn không âm với mọi `x;y`
Ta có:
\(-x^2+x-5\\ =-x^2+x-\dfrac{1}{4}+\dfrac{1}{4}-5\\ =-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}-5\\ =-\left[x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2\right]-\dfrac{19}{4}\\ =-\left(x-\dfrac{1}{2}\right)^2-\dfrac{19}{4}\)
Nhận xét:
\(\left(x-\dfrac{1}{2}\right)^2\ge0,\forall x\\
\Rightarrow-\left(x-\dfrac{1}{2}\right)^2\le0,\forall x\\
\Rightarrow-\left(x-\dfrac{1}{2}\right)^2-\dfrac{19}{4}\le-\dfrac{19}{4},\forall x\)
hay \(-x^2+x-5\le-\dfrac{19}{4},\forall x\)
Dấu "=" xảy ra khi và chỉ khi:
\(x-\dfrac{1}{2}\\=0\\
\Rightarrow x=\dfrac{1}{2}\)
Vậy...
a: D đối xứng H qua AB
=>AH=AD;BH=BD
E đối xứng H qua AC
=>AH=AE; CH=CE
Xét ΔAHB và ΔADB có
AH=AD
HB=DB
AB chung
Do đó: ΔAHB=ΔADB
=>\(\widehat{AHB}=\widehat{ADB}=90^0\)
ΔAHB=ΔADB
=>\(\widehat{HAB}=\widehat{DAB}\)
=>AB là phân giác của góc HAD
Xét ΔAHC và ΔAEC có
AH=AE
CH=CE
AC chung
Do đó: ΔAHC=ΔAEC
=>\(\widehat{AHC}=\widehat{AEC}=90^0\)
ΔAHC=ΔAEC
=>\(\widehat{HAC}=\widehat{EAC}\)
=>AC là phân giác của góc HAE
\(\widehat{DAE}=\widehat{DAH}+\widehat{EAH}=2\left(\widehat{BAH}+\widehat{CAH}\right)=2\cdot90^0=180^0\)
=>D,A,E thẳng hàng
=>BD//CE
Xét tứ giác BDEC có BD//EC
nên BDEC là hình thang
b: Ta có: AD=AH
AH=AE
Do đó: AD=AE
=>A là trung điểm của DE
Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=HA^2\)
=>\(BD\cdot CE=\left(\dfrac{1}{2}DE\right)^2=\left(\dfrac{DE}{2}\right)^2\)
c: Xét ΔABC vuông tại A có AH là đường cao
nên \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
=>\(\dfrac{1}{AH^2}=\dfrac{1}{3^2}+\dfrac{1}{4^2}=\dfrac{25}{144}\)
=>\(AH=\sqrt{\dfrac{144}{25}}=\dfrac{12}{5}=2,4\left(cm\right)\)
=>DE=2AH=4,8(cm)
\(\left(2a+b\right)^2-\left(2b+a\right)^2\\ =\left[\left(2a+b\right)-\left(2b+a\right)\right]\left[\left(2a+b\right)+\left(2b+a\right)\right]\\ =\left(2a+b-2b-a\right)\left(2a+b+2b+a\right)\\ =\left(a-b\right)\left(3a+3b\right)\\ =3\left(a-b\right)\left(a+b\right)\)