tính tổng
S= 1+/1+2+1/1+2+3+...+1/1+2+3+...+2001
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để chứng minh rằng (11a + 2b) chia hết cho 19, ta cần chứng minh rằng (10a + 7b) cũng chia hết cho 19. Giả sử (11a + 2b) chia hết cho 19, tức là tồn tại số nguyên k sao cho: 11a + 2b = 19k (1) Nhân cả hai vế của phương trình (1) với 10, ta có: 110a + 20b = 190k (2) Trừ phương trình (2) cho phương trình (1), ta được: (110a + 20b) - (11a + 2b) = 190k - 19k 99a + 18b = 171k Chia cả hai vế của phương trình trên cho 19, ta có: (99a + 18b)/19 = 171k/19 5a + b = 9k Nhân cả hai vế của phương trình trên với 2, ta có: 10a + 2b = 18k Thêm cả hai vế của phương trình trên với (11a + 2b), ta có: (10a + 2b) + (11a + 2b) = 18k + 19k 21a + 4b = 37k Chia cả hai vế của phương trình trên cho 19, ta có: (21a + 4b)/19 = 37k/19 a + (2b/19) = 2k Vì a, b, và k đều là số nguyên, nên (2b/19) cũng phải là số nguyên. Điều này chỉ xảy ra khi (2b/19) là một số nguyên chia hết cho 2. Vậy, ta có thể kết luận rằng nếu (11a + 2b) chia hết cho 19, thì (10a + 7b) cũng chia hết cho 19.
ko chép
a)*=1
b)*=8
c)*=-155 ( -155 chứ không thể 155 được
\(5^2+3^2-\left(5^{16}:25^7+3^4:3\right)=25+9-\left[5^{16}:\left(5^2\right)^7+27\right]\)
\(=25+9-\left[5^{16}:5^{14}+27\right]\)
\(=25+9-\left[25+27\right]\)
\(=-18\)
_Học tốt nha_
a) \(\frac{15}{12}+\frac{5}{13}-\frac{3}{12}-\frac{18}{13}=\left(\frac{15}{12}-\frac{3}{12}\right)+\left(\frac{5}{13}-\frac{18}{13}\right)\)
\(=1+\left(-1\right)\)
\(=0\)
b) \(\frac{11}{24}-\frac{5}{41}+\frac{13}{24}+0,5-\frac{36}{41}=\left(\frac{11}{24}+\frac{13}{24}\right)+\left(-\frac{5}{41}-\frac{36}{41}\right)+0,5\)
\(=1+\left(-1\right)+0,5\)
\(=0,5\)
_Học tốt nha_
a, \(\frac{15}{12}\)+ \(\frac{5}{13}\)- \(\frac{3}{12}\)-\(\frac{18}{13}\)
= \(\frac{5}{4}\)+ \(\frac{5}{13}\) - \(\frac{1}{4}\) - \(\frac{18}{13}\)
= \(\left(\frac{5}{4}-\frac{1}{4}\right)\)+ \(\left(\frac{5}{13}-\frac{18}{13}\right)\)
= 1 - 1 = 0
b, \(\frac{11}{24}\)- \(\frac{5}{41}\)+ \(\frac{13}{24}\)+ 0,5 - \(\frac{36}{41}\)
= \(\left(\frac{11}{24}+\frac{13}{24}\right)\)- \(\left(\frac{5}{41}+\frac{36}{41}\right)\)+ 0,5
= 1 - 1 + 0,5 = 0,5
c, \(\left(-\frac{3}{4}+\frac{2}{3}\right):\frac{5}{11}+\left(-\frac{1}{4}+\frac{1}{3}\right):\frac{5}{11}\)
=\(\left(-\frac{3}{4}+\frac{2}{3}\right).\frac{11}{5}+\left(-\frac{1}{4}+\frac{1}{3}\right).\frac{5}{11}\)
= \(\frac{11}{5}.\left(-\frac{3}{4}+\frac{2}{3}-\frac{1}{4}+\frac{1}{3}\right)\)
= \(\frac{11}{5}.\left[\left(-\frac{3}{4}-\frac{1}{4}\right)+\left(\frac{2}{3}+\frac{1}{3}\right)\right]\)
= \(\frac{11}{5}.\left[\left(-1\right)+1\right]\)
= 0
d, \(\left(-3\right)^2.\left(\frac{3}{4}-0,25\right)-\left(3\frac{1}{2}-1\frac{1}{2}\right)\)
= \(9.\left(0,75-0,25\right)-2\)
= 9. 0,5 - 2 = 2,5
e, \(\frac{13}{25}+\frac{6}{41}-\frac{38}{25}+\frac{35}{41}-\frac{1}{2}\)
= \(\left(\frac{13}{25}-\frac{38}{25}\right)+\left(\frac{6}{41}+\frac{35}{41}\right)-\frac{1}{2}\)
= -1 + 1 - \(\frac{1}{2}\)
= \(-\frac{1}{2}\)
đéo bít
đề kiểu gì vậy