K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2019

Gọi số học sinh cần tìm là : a(học sinh). Điều kiện : a\(\in\)N* ; 250\(\le\)a\(\le\)450.

Vì chia nhóm 12, nhóm 16, nhóm 18 thừa 6 em và chia nhóm 14 vừa đủ nên ta có : a-6 chia hết cho cả 12,16,18 ; a\(⋮\)14.

\(\Rightarrow\)a\(\in\)BC(12,16,18)

Ta có : 12=22.3

           16=24

           18=2.32

\(\Rightarrow\)BCNN(12,16,18)=24.32=144

\(\Rightarrow\)BC(12,16,18)=B(144)={0;144;288;432;576;...}

\(\Rightarrow\)a-6\(\in\){0;144;288;432;576;...}

\(\Rightarrow\)a\(\in\){6;150;294;438;582;...}

Mà 250\(\le\)a\(\le\)450 và a\(⋮\)14

\(\Rightarrow\)a=294

Vậy khối 6 có 294 học sinh.

\(a) Xét\ tứ\ giác\ ABDN\,\ có:\)

\(AB//DN(N∈ đường\ thẳng\ đi\ qua\ D\ và // với\ AB)\)

\(⇒ABDN\ là\ hình\ thang\)

\(Mà\ BAN=90^o\)

\(⇒ ABDN\ là\ hình\ thang\ vuông\)

\(b)Xét\ ΔADC, có:\)

\(DN⊥AC\ (DN//AB\ mà\ AB⊥AC)\)

\(CH⊥AD\)

\( Mà\ M\ là\ giao\ điểm\ của\ DN\ và\ CH\)

\(Do\ đó:\ M\ là\ trung\ tâm\ của\ ΔACD\)

\(bài\ làm\ lộn\ lỡ\ rồi\ sai\ rồi\ đừng\ chép\ sorry\)

13 tháng 12 2019

Câu c) mình sai rồi nên hãy giúp mình câu a và b thôi 

14 tháng 12 2019

Hướng dẫn: 

Gọi F là giao điểm của d và AB

\(\Delta\)BFE ~ \(\Delta\)DBA ( g - g - g) 

=> \(\frac{BF}{DB}=\frac{BE}{DA}\)=> BF . DA = DB . BE  (1) 

Ta có : BD // CF => \(\frac{AB}{BF}=\frac{AD}{DC}\)=> AB . DC = AD . BF  (2)

Từ (1) ; (2) => DB . BE = AB . DC => \(\frac{BD}{AB}=\frac{DC}{BE}\)(3)

Có:  CF // BD và BE vuông CF => BE vuông DB => ^DBE = 90\(^o\)

=> ^EBF  + ^DBA = 90\(^o\)

mà ^DBA + ^ADB = 90\(^o\)

=> ^EBF = ^ADB 

=> ^CDB = ^EBA ( 4 )

3, 4 => \(\Delta\)BAE ~ \(\Delta\)DBC ( c.g.c)

13 tháng 12 2019

Ta có : A=1+5+52+...+52014

5A=5+52+53+...+52015

5A-A=(5+52+53+...+52015)-(1+5+52+...+52014)

\(\Rightarrow\)4A=52015-1

\(\Rightarrow\)4A+1=52015-1+1=52015

\(\Rightarrow\)5n=52015

\(\Rightarrow\)n=2015

Vậy n=2015.

13 tháng 12 2019

\(Ta \)  \(có : \)

\(A = 1 + 5 + 5 ^ 2 + ... + 5\)\(2014\)

\(5A = 5 + 5^ 2 + 5^ 3 + ... + 5\)\(2015\)

\(5A - A = ( 5 + 5^ 2 + 5^ 3+ ...+ 5\)\(2015\)\() - ( 1+ 5 + 5^2 + ...+ 5\)\(2014\)\()\)

\(4A = 5\)\(2015\) \(- 1 \)

\(\Leftrightarrow\)\(4A + 1 = 5\)\(2015\)

\(Mà \) \(theo \) \(đề \) \(ta \) \(có :\)\(4A + 1 = 5^n\)

\(\Rightarrow\)\(5^n = 5\)\(2015\)

\(\Rightarrow\)\(n = 2015\)

\(Vậy : n = 2015\)

27 tháng 12 2021

ai bt j đâu. Coi như tôi chưa xem nhá :)))  pai pai

27 tháng 12 2021

cái này đúng nek :)))

13 tháng 12 2019

\(N=x^2+5y^2-4xy+6x-14y+15=x^2-4xy+4y^2+6x-12y+9+y^2-2y+1+5\)

\(=\left(x^2-4xy+4y^2\right)+\left(6x-12y\right)+9+\left(y^2-2y+1\right)+5\)

\(=\left[x^2-2.x.2y+\left(2y\right)^2\right]+6\left(x-2y\right)+9+\left(y^2-2.y.1+1^2\right)+5\)

\(=\left(x-2y\right)^2+6\left(x-2y\right)+9+\left(y-1\right)^2+5\)

\(=\left[\left(x-2y\right)^2+6\left(x-2y\right)+9\right]+\left(y-1\right)^2+5\)

\(=\left[\left(x-2y\right)^2+2.\left(x-2y\right).3+3^2\right]+\left(y-1\right)^2+5=\left(x-2y+3\right)^2+\left(y-1\right)^2+5\ge5\)

\(\Rightarrow GTNN\)của biểu thức N là 5.

Dấu\("="\)xảy ra\(\Leftrightarrow x-2y+3=0\)\(y-1=0\Leftrightarrow x-2y=-3\)\(y=1\).

\(\Leftrightarrow x-2.1=-3\)\(y=1\Leftrightarrow x=-3+2=-1\)\(y=1\).

Vậy\(GTNN\)của biểu thức N là 5 tại\(x=-1\)\(y=1\).

13 tháng 12 2019

\(N = x^2+5y^2-4xy+6x-14y+15\)

\(N= [ ( x^2 - 4xy + 4y^2) + ( 6x - 12y) + 9 ]\)\(+ ( y^2 - 2y + 1 ) + 5\)\(N = [( x - 2y )^2 + 6( x - 2y ) + 9 ] + \)\(( y - 1 )^2 + 5\)\(N = ( x - 2y + 3 )^2 + ( y - 1 )^2 +5\)\(\ge\)\(5\)

\(Dấu " = " xảy ra \)\(\Leftrightarrow\)\(x - 2y + 3 = 0 \) \(và \) \(y - 1 = 0\)

\(\Rightarrow\)\(x - 2y + 3 = 0 \) \(và\) \(y = 1\)

\(\Rightarrow\)\(x = - 1\) \(và \) \(y = 1\)

\(Min N = 5 \)\(\Leftrightarrow\)\(x = - 1\) \(và \) \(y = 1\)