Cho x, y, z là các số dương thay đổi thoả mãn \(xy+yz+zx=5\)
Tìm min của \(T=3x^2+3y^2+z^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giác ABM VÀ tam giác ADM có
AM chung
AB=AD(gt)
MB=MD(gt)
=) tam giác ABM = tam giác ADM (c-c-c)
b)ta có AB=AD(gt)
=)tam giác ABC cân tại A
Lại có AM là trung tuyến
=) AM là đường cao
=) AM vuông góc BD
c) Ta có tam giác ABM = tam giác ADM (cmt)
=) góc A1 =góc A2 (2 góc tương ứng)
xét tam giác ABK và tam giác ADK có
góc A1= GÓC A2 (CMT)
AK chung
AB=AD(cmt)
=) tam giác ABK=tam giác ADK(c-g-c)
d) ta có góc A1= góc A4 (đối đỉnh )
ta có A2+A3+A4=180 ĐỘ ( BKC LÀ góc bẹt )
MÀ A1 =A4 (cmt)
=)A1+A2+A3=180 ĐỘ
=) FKD là góc bẹt
=)F K D thẳng hàng
x : 0,25 + x . 11 = 24
x . 4 + x . 11 = 24
x (4 + 11) = 24
x . 15 = 24
x = 24 : 15
x = 1,6
Vậy x = 1,6
=))
mấy bạn trả lời cho mình nhé , mình đang gấp, mong các bạn trả lời nhanh cho mình!
\(A=\frac{2x-\sqrt{x}+8}{2\sqrt{x}-1}=\frac{\sqrt{x}\left(2\sqrt{x}-1\right)+8}{2\sqrt{x}-1}\)
\(=\frac{\sqrt{x}\left(2\sqrt{x}-1\right)}{2\sqrt{x}-1}+\frac{8}{2\sqrt{x}-1}=\sqrt{x}+\frac{8}{2\sqrt{x}-1}\)
Áp dụng BĐT Cô Si cho 2 số dương \(\sqrt{x}\)và \(\frac{8}{2\sqrt{x}-1}\)ta có :
\(\sqrt{x}+\frac{8}{2\sqrt{x}-1}\ge2\sqrt{\sqrt{x}.\frac{8}{2\sqrt{x}-1}}\)
\(\Rightarrow A_{min}\)\(\Leftrightarrow2\sqrt{\sqrt{x}.\frac{8}{2\sqrt{x}-1}}\)nhỏ nhất \(\Rightarrow x=0\)
Vậy \(A=0\)\(\Leftrightarrow\sqrt{x}=\frac{8}{2\sqrt{x}-1}\)( tự tính nha )
Phạm Thị Thùy Linh đây nhé
\(A=\frac{2x-\sqrt{x}+8}{2\sqrt{x}-1}=\frac{1}{2}\left(2\sqrt{x}-1+\frac{16}{2\sqrt{x}-1}\right)+\frac{1}{2}\ge\frac{9}{2}\)
Dấu "=" xảy ra khi \(x=\frac{25}{4}\)
\(=[1+\left(-2\right)]+\left[3+\left(-4\right)\right]+...+\left[997+\left(-998\right)\right]+\left[999+\left(-1000\right)\right]\)
\(=1+1+...+1+1\)
Học sinh tự làm :))) lười viết
Ta có: A= 2 + 22 + 23 + … + 260= (2 +22) + (23+ 24) + … + (259 + 260).
= 2 x (2 + 1) + 23 x (2 + 1) + … + 259 x (2 + 1).
= 2 x 3 + 23 x 3 + … + 259 x 3.
= 3 x ( 2 + 23 + … + 259).
Vì A = 3 x ( 2 + 23 + … + 259) nên A chia hết cho 3.
a/ Gọi điểm cố định đó là N(x0;y0)N(x0;y0) .
Vì (d) đi qua N nên : (m−2)x0+(m−1)y0−1=0⇔m(x0+y0)−(2x0+y0+1)=0(m−2)x0+(m−1)y0−1=0⇔m(x0+y0)−(2x0+y0+1)=0
Để (d) luôn đi qua N với mọi m thì {x0+y0=02x0+y0+1=0{x0+y0=02x0+y0+1=0
⇔{x0=−1y0=1⇔{x0=−1y0=1 . Vậy điểm cố định đó là N(-1;1)
Áp dụng AM - GM:
\(2x^2+\frac{1}{2}z^2\ge2\sqrt{2x^2.\frac{1}{2}z^2}=2xz\)
\(2y^2+\frac{1}{2}z^2\ge2\sqrt{2y^2.\frac{1}{2}z^2}=2yz\)(x,y,z dương)
\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)
Cộng từng vế của các BĐT trên:
\(T\ge2\left(xy+yz+xz\right)=10\)
(Dấu "="\(\Leftrightarrow x=1;y=1;z=2\))
Có \(3z^2\)ko ạ ?