CMR: Nếu 1/x + 1/y + 1/z = 1/x+yz thì 1/x^2017 +1/y^2017 + 1/z^2017 = 1/(x^2017 + y^2017 + z^2017)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) (2600+6400) - 3x = 1200
=> 9000 - 3x = 1200
=> 3x = 9000 - 1200
=> 3x = 7800
=> x = 7800 : 3
=> x = 2600
Vậy x = 2600.
b) [(6x - 72) : 2 - 84] . 28 = 5628
=> [(6x - 72) : 2 - 84] = 5628 : 28
=> (6x - 72) : 2 - 84 = 201
=> (6x - 72) : 2 = 201 + 84
=> (6x - 72) : 2 = 285
=> (6x - 72) = 285 . 2
=> 6x - 72 = 570
=> 6x = 570 + 72
=> 6x = 642
=> x = 642 : 6
=> x = 107
Vậy x = 107.

\(\left(x+1\right)^2+\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\)
\(=x^2+2x+1+\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\)
\(=x^2+2x+1+x^2-1+\left(x-1\right)^2\)
\(=x^2+2x+1+x^2-1+x^2-2x+1\)
\(=3x^2+1\) (1)
Thay x = 100 vào (1), ta có:
\(3x^2+1=\left(3.100\right)^2+1=90001\)

a) Ta có: A = x2 - 4x + 7
A = (x2 - 4x + 4) + 3
A = (x - 2)2 + 3 \(\ge\)3 \(\forall\)x
Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2
Vậy MinA = 3 <=> x = 2
b) Xem lại đề



a) Ta có: n + 9 = (n + 4) + 5
Do n + 4 \(⋮\)n + 4 => 5 \(⋮\)n + 4
=> n + 4 \(\in\)Ư(5) = {1; -1; 5; -5}
Lập bảng:
n + 4 | 1 | -1 | 5 | -5 |
n | -3(ktm) | -5(ktm) | 1(tm) | -9(ktm) |
Vậy ...
b) HD: 2n + 7 = 2(n - 3) + 13
còn lại tự trên
c;d tự làm tt
Ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\cdot\frac{xy+z\left(x+y+z\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow x=-y\left(h\right)y=-z\left(h\right)z=-x\)
Xét \(x=-y\)
Ta có:
\(\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{x^{2017}}+\frac{1}{-y^{2017}}+\frac{1}{y^{2017}}=\frac{1}{z^{2017}}\)
\(\frac{1}{x^{2017}+y^{2017}+z^{2017}}=\frac{1}{-x^{2017}+y^{2017}+z^{2017}}=\frac{1}{z^{2017}}\)
\(\Rightarrow\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{x^{2017}+y^{2017}+z^{2017}}\left(dpcm\right)\)
Một cái chặt hơn nè:))
CMR nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) thì \(\frac{1}{x^n}+\frac{1}{y^n}+\frac{1}{z^n}=\frac{1}{x^n+y^n+z^n}\) với n lẻ.