K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2019

thanh niên này chắc VIP dài quá:))

** Max 

\(A^2=\left(\sqrt{x+y}\cdot1+\sqrt{y+z}\cdot1+\sqrt{z+x}\cdot1\right)^2\)

Theo bunhia ta có:

\(A^2\le\left(1+1+1\right)\left(x+y+y+z+z+x\right)=6\Rightarrow A\le\sqrt{6}\) tại \(x=y=z=\frac{1}{3}\)

*** Min

Giả sử \(1\ge y\ge x\ge z\)

Ta có:

\(\sqrt{x+y}+\sqrt{y+z}\ge\sqrt{y}+\sqrt{x+y+z}\)

\(\Leftrightarrow\sqrt{\left(x+y\right)\left(y+z\right)}\ge\sqrt{y\left(x+y+z\right)}\)

\(\Leftrightarrow xz=0\)

Đẳng thức xảy ra \(\Leftrightarrow\orbr{\begin{cases}x=0\\z=0\end{cases}}\)

Mặt khác:

\(\sqrt{y}+\sqrt{z+x}\ge\sqrt{x+y+z}\)

\(\Leftrightarrow\sqrt{y\left(z+x\right)}=0\)

Đẳng thức xảy ra \(\orbr{\begin{cases}y=0\\z+x=0\end{cases}}\)

Kết hợp 2 dấu đẳng thức xảy ra thì \(x=z=0;y=1\)

Khi đó 

\(A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)

\(\ge\sqrt{x+y+z}+\sqrt{x+y+z}=2\sqrt{x+y+z}=2\)

Dấu "=" xảy ra tại \(\left(x;y;z\right)=\left(0;1;0\right)\) và các hoán vị.

21 tháng 11 2019

Em có cách này cho phần min nhưng không chắc lắm..

Min:

Giả sử \(x\ge y\ge z\)

\(A=\sqrt{2\left(x+y+z\right)+2\Sigma_{cyc}\sqrt{\left(x+y\right)\left(z+y\right)}}\) (bình phương lên rồi lấy căn:v)

\(\ge\sqrt{2\left(x+y+z\right)+2\Sigma_{cyc}\left(\sqrt{xz}+y\right)}\)

\(=\sqrt{4\left(x+y+z\right)+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}\ge\sqrt{4\left(x+y+z\right)}=2\)

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(1;0;0\right)\) và các hoán vị.

Chiều này trường mình vừa khảo sát HSG. Các bạn thử sức với 1 số bài trích ở đề nhé.1. Tìm \(x;y\in Z\) thỏa mãn \(x^4+x^2-y^2-y+20=0\)2. Giải hệ: \(\hept{\begin{cases}\left(x+y\right)^2+x=3\\3\left(x^2+xy+y^2\right)+2y=7\end{cases}}\)3., Cho a;b;c > 0 thỏa mãn ab + bc + ca = 5.Tính GTNN của \(P=\sqrt{6\left(a^2+5\right)}+\sqrt{6\left(b^2+5\right)}+\sqrt{c^2+5}\)4. Cho pt \(x^2+\left(2-m\right)x-1-m=0\)a, Tìm m...
Đọc tiếp

Chiều này trường mình vừa khảo sát HSG. Các bạn thử sức với 1 số bài trích ở đề nhé.

1. Tìm \(x;y\in Z\) thỏa mãn \(x^4+x^2-y^2-y+20=0\)

2. Giải hệ: \(\hept{\begin{cases}\left(x+y\right)^2+x=3\\3\left(x^2+xy+y^2\right)+2y=7\end{cases}}\)

3., Cho a;b;c > 0 thỏa mãn ab + bc + ca = 5.

Tính GTNN của \(P=\sqrt{6\left(a^2+5\right)}+\sqrt{6\left(b^2+5\right)}+\sqrt{c^2+5}\)

4. Cho pt \(x^2+\left(2-m\right)x-1-m=0\)

a, Tìm m để \(\left|x_1-x_2\right|=2\sqrt{2}\)

b, Tìm m để \(T=\frac{1}{\left(x_1+1\right)^2}+\frac{1}{\left(x_2+1\right)^2}\) đạt GTNN

5. Cho hình vuông ABCD, O là tâm hình vuông. M di động trên AB. Trên AD lấy E sao cho AE = AM, trên BC lấy F sao cho BF = BM

a, C/m E,O,F thẳng hàng

b, Kẻ \(MH\perp EF\left(H\in EF\right)\) .C/m A,B,H,O cùng nằm trên 1 đường tròn

c, C/m khi M di động trên AB thì MH luôn đi qua 1 điểm cố định.

 

0