Phân tích đa thức thành nhân tử
8x ^ 3 - 1 + (10x - 9)(5x - 1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N I K
a/ Ta có
\(AB\perp AC\left(gt\right)\Rightarrow AM\perp AC;IN\perp AC\left(gt\right)\) => AM//IN
\(AC\perp AB\left(gt\right)\Rightarrow AN\perp AB;IM\perp AB\left(gt\right)\) => AN//IM
=> AMIN là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
Mà \(\widehat{A}=90^o\)
=> AMIN là HCN
b/
Ta co
AM//IN (cmt) =>AB//IK
BK//AI (gt)
=> ABKI là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh) => BK=AI (cạnh đối hbh)
c/
Xét tg vuông ABC có
\(AI^2=BI.CI\) (Trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow3AI^2=3.BI.CI\) (1)
Xét tg vuông MBI có
\(BM^2=BI^2-MI^2\) (2) (Pitago)
Xét tg vuông NCI có
\(CN^2=CI^2-NI^2\) (3) (Pitago)
Cộng 2 vế của (1) (2) (3) ta có
\(3AI^2+BM^2+CN^2=BI^2+CI^2+3.BI.CI-\left(MI^2+NI^2\right)=\)
\(=\left(BI+CI\right)^2+BI.CI-\left(MI^2+NI^2\right)=\)
\(=BC^2+BI.CI-\left(MI^2+NI^2\right)\) (4)
Ta có
\(BI.CI=AI^2\left(cmt\right)\) (5)
Xét tg vuông AIN có
\(AI^2=AN^2+NI^2\)
Do AMIN là HCN (cnt) => AN=MI
\(\Rightarrow AI^2=MI^2+NI^2\) (6)
Thay (5) và (6) vào (4) ta có
\(3AI^2+BM^2+CN^2=BC^2+AI^2-AI^2\)
\(\Rightarrow BC^2=3AI^2+BM^2+CN^2\left(dpcm\right)\)
a) Gam thứ là hệ thống gồm 7 bậc âm được sắp xếp liền bậc từ thấp lên cao, từ cao xuống thấp, bắt đầu từ âm bậc 1
PT: \(Fe+2HCl\rightarrow FeCl_2+H_2\)
Ta có: \(n_{H_2}=\dfrac{20}{24,79}\left(mol\right)\)
Theo PT: \(n_{HCl}=2n_{H_2}=\dfrac{40}{24,79}\left(mol\right)\)
\(\Rightarrow C_{M_{HCl}}=\dfrac{\dfrac{40}{24,79}}{0,5}\approx3,23\left(M\right)\)
Local people in that village still follow the old lifestyle of their ancestors
Bạn xem lại nhé. Đa thức đã cho không phân tích được thành nhân tử nữa. Chỉ thu gọn được thành $8x^3+50x^2-55x+10$