K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2019

O G H A B C K

GỌi H,G,O là trực tâm , trọng tâm và tâm đường tròn ngoại tiếp tam giác ABC , cần chứng minh H,G,O

Vẽ hình bình hành BHCK

\(\Rightarrow\hept{\begin{cases}\vec{HB}=\vec{CK}\\KC//BH\end{cases}}\)

\(\Rightarrow KC\perp AC\)

Xét tam giác ACK có \(\widehat{ACK}=90^o\Rightarrow\overline{A,O,K}\)(Do là đường kính)

Có \(\vec{HA}+\vec{HB}+\vec{HC}=2\vec{HO}\)

\(\Leftrightarrow3\vec{HG}+\vec{GA}+\vec{GB}+\vec{GC}=2\vec{HO}\)

\(\Leftrightarrow3\vec{HG}+\vec{0}=2\vec{HO}\)(Hệ thức trọng tâm)

\(\Rightarrow\vec{HG}=\frac{2}{3}\vec{HO}\)

\(\Rightarrow\overline{H,G,O}\left(Dpcm\right)\)

13 tháng 4 2020

∆ABC có H là trực tâm, G là trọng tâm, O là giao điểm của 3 đường trung trực.

Gọi M là trung điểm của BC. Lấy D đối xứng với A qua O

Ta có: OA = OC (tính chất của điểm thuộc đường trung trực)

Mà OA = OD (theo cách chọn điểm phụ) nên OA = OC = OD

Do đó ∆ACD vuông tại C \(\Rightarrow CD\perp AC\)

Mà  \(\Rightarrow BH\perp AC\left(gt\right)\Rightarrow BH//CD\)(1)

Chứng minh tương tự: \(CH//BD\)(2)

Từ (1) và (2) suy ra BHCD là hình bình hành có M là trung điểm của BC nên M cũng là trung điểm của HD (cũng suy ra được H, M, D thẳng hàng)

∆ADH có AM là trung tuyến và \(AG=\frac{2}{3}AM\left(gt\right)\)nên G là trọng tâm

\(\Rightarrow\)Trung tuyến thứ hai là HO đi qua G

Vậy H, G, O thẳng hàng

22 tháng 7 2019

1) Số % học sinh biết chơi bóng chuyền và bóng bàn là

50% + 65% - 30% = 85%(tổng số học sinh)(Mình trừ đi 30% vì khi cộng 50 và 65 sẽ trong đó số hs biết chơi cả 2 sẽ đc tính 2 lần nên phải bớt đi 1 làn nha)

Số % học sinh ko biết chs cả 2 là : 

100% - 85% = 15%(tổng số học sinh)

Số học sinh ko biết chs cả 2 là : 

200.15%=30(học sinh)

Học tốt nha bạn

20 tháng 7 2019

bđt <=> \(a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\) Schur bậc 3 (bn ko bt thì search gg)

20 tháng 7 2019

nhưng ko sao chép đc -,-