K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2019

Vì a và b là 2 số có tổng chia hết cho 10

Nên tổng các chữ số tận cùng của 2 số này chia hết cho 10

-) Nếu chữ số tận cùng của a và b bằng nhau 

Thì chữ số tận cùng của a và b đều là 5 hoặc 0

Do đó a2 và b2 có cùng chữ số tận cùng

-) Nếu chữ số tận cùng của a lớn hơn b ( làm tương tự với c

+) Nếu chữ số tận cùng của a bằng 6

Do đó chữ số tận cùng của b bằng 4

Hai số này bình phương có cùng chữ số tận cùng là 6

+) Nếu chữ số tận cùng của a bằng 7

Do đó chữ số tận cùng của b bằng 3

Hai số này có bình phương có cùng chữ số tận cùng là 9

+) Nếu chữ số tận cùng của a bằng 8

Do đó chữ số tận cùng của b bằng 2

Hai số này có bình phương có cùng chữ số tận cùng là 4

+) Nếu chữ số tận cùng của a bằng 9

Do đó chữ số tận cùng của b bằng 1

Hai số này có bình phương có cùng chữ số tận cùng là 1

Vậy a2 và b2 có chữ số tận cùng giống nhau khi a và b có tổng chia hết cho 10

25 tháng 7 2019

a) Để chứng minh AMC = BAC ta có:

Vì M là trung trực của AC (gt)

=>MA = MC

=>\(\Delta\) ABC Cân tại M

=>góc AMC = 180 độ - 2 lần góc nhỏ

=>góc BAC  =180 độ =góc AMC ( = 180 độ - 2 lần góc C

Cách sao là chứng minh đó

Rút gọn thế này:Cho tam giác ABC cân tại A có BC>BM Đường trung trực của AC cắt tại đường thẳg BC Đường trung trực .........

b)

Ta có CM + CN = Góc MAC  180 độ ( góc kẻ bù)

=> mà góc ABC + MAN = 180 độ (đcmp_

góc ABC cân tại A =góc ABC 

=> góc ABC = góc AMC  (tam  gi cân tjai A)

c)

Mình chịu 

A NBC M

Study well :)

25 tháng 7 2019

#)Giải :

Áp dụng BĐT Cauchy 2 số :

\(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2\)

\(\Leftrightarrow a^4+b^4+c^4+d^4\ge2\left(a^2b^2+c^2d^2\right)\)

\(\Leftrightarrow a^4+b^4+c^4+d^4\ge4abcd\left(đpcm\right)\)

25 tháng 7 2019

Với mọi a, b, c, d

ta có: \(0\le\left(a^2-b^2\right)^2=a^4-2a^2b^2+b^4\)

=> \(a^4+b^4\ge2a^2b^2\)

tương tự: \(c^4+d^4\ge2c^2d^2\)

\(a^2b^2+c^2d^2\ge2abcd\)

=> \(\left(a^4+b^4\right)+\left(c^4+d^4\right)\ge2a^2b^2+2c^2d^2=2\left(a^2b^2+c^2d^2\right)\ge4abcd\)

Vậy ta có điều cần phải chứng minh.

25 tháng 7 2019

từ câu a) ta có: \(\orbr{\begin{cases}x=y+1\\x=y-1\end{cases}}\) và \(\hept{\begin{cases}x-y=t-z\\y=t\end{cases}}\) (3) 

+) Với \(x=y+1\) thì (3) \(\Leftrightarrow\)\(\hept{\begin{cases}y+1-y=y-z\\y=t\end{cases}}\Leftrightarrow\hept{\begin{cases}y=z+1\\y=t\end{cases}}\)

\(\Rightarrow\)\(x=y+1=z+2\) ( x,y,z là 3 số nguyên liên tiếp ) 

+) Với \(x=y-1\) thì (3) \(\Leftrightarrow\)\(\hept{\begin{cases}y-1-y=y-z\\y=t\end{cases}}\Leftrightarrow\hept{\begin{cases}y=z-1\\y=t\end{cases}}\)

\(\Rightarrow\)\(x=y-1=z-2\) ( x,y,z là 3 số nguyên liên tiếp ) 

25 tháng 7 2019

\(x+z=y+t\)\(\Leftrightarrow\)\(x^2+z^2+2xz=y^2+t^2+2yt\) (1) 

Mà \(xz+1=yt\)\(\Leftrightarrow\)\(2xz+2=2yt\)

(1) \(\Leftrightarrow\)\(x^2+z^2+2yt=y^2+t^2+2xz+4\)

\(\Leftrightarrow\)\(\left(x-z\right)^2-\left(y-t\right)^2=4\)

\(\Leftrightarrow\)\(\left(x-z-y+t\right)\left(x-z+y-t\right)=4\) (2) 

Lại có: \(x+z=y+t\)\(\Rightarrow\)\(\hept{\begin{cases}x-y=t-z\\x-t=y-z\end{cases}}\)

(2) \(\Leftrightarrow\)\(\left(x-y\right)\left(x-t\right)=1\)

TH1: \(\hept{\begin{cases}x-y=1\\x-t=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y+1\\x=t+1\end{cases}}\Leftrightarrow y=t\)

TH2: \(\hept{\begin{cases}x-y=-1\\x-t=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y-1\\x=t-1\end{cases}}\Leftrightarrow y=t\)

24 tháng 7 2019

Bạn hỏi sớm hơn nữa nhé hỏi mụn lúc này ít ai tloi lắm

a) \(A=\frac{1}{4}x^2+x-2\)

\(=\left(\frac{1}{2}x\right)^2+2.\frac{1}{2}x.1+1-3\)

\(=\left(\frac{1}{2}x+1\right)^2-3\)

Vì \(\left(\frac{1}{2}x+1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(\frac{1}{2}x+1\right)^2-3\ge0-3;\forall x\)

Hay \(A\ge-3;\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(\frac{1}{2}x+1\right)^2=0\)

                        \(\Leftrightarrow x=-2\)

Vậy MIN A=-3 \(\Leftrightarrow x=-2\)

24 tháng 7 2019

Các câu khác cứ việc khai triển ra hằng đẳng thức mũ chẵn mà làm nhé

24 tháng 7 2019

Để P=-1 \(\Rightarrow\frac{4x-2}{4x^2-9}=-1\)

\(\Leftrightarrow4x-2=-\left(4x^2-9\right)\)

\(\Leftrightarrow4x-2=9-4x^2\)

\(\Leftrightarrow4x^2+4x-2-9=0\)

\(\Leftrightarrow4x^2+4x-11=0\)

????

24 tháng 7 2019

\(P=-1\Rightarrow P=\frac{4x-2}{4x^2-9}=-1\)

\(P=\frac{4x-2}{4x^2-9}=-1\)

<=> \(\frac{2\left(2x-1\right)}{\left(2x\right)^2-3^2}=-1\)

<=> \(\frac{2\left(2x-1\right)}{\left(2x+3\right)\left(2x-3\right)}=-1\)

<=> \(2\left(2x-1\right)=-\left(2x+3\right)\left(2x-3\right)\)

<=> \(4x-2=-4x^2-6x+6x+9\)

<=> \(4x-2=-4x^2+9\)

<=> \(4x-2+4x^2-9=0\)

<=> \(4x-11+4x^2=0\)

<=> \(\orbr{\begin{cases}x=\frac{-4+8\sqrt{3}}{8}\\x=\frac{-4-8\sqrt{3}}{8}\end{cases}}\)<=> \(\orbr{\begin{cases}x=\frac{-1-2\sqrt{3}}{2}\\x=\frac{-1+2\sqrt{3}}{2}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{-1-2\sqrt{3}}{2}\\x=\frac{-1+2\sqrt{3}}{2}\end{cases}}\)

24 tháng 7 2019

Ta có: \(P=\frac{1}{x+5}=-3\) 

               \(\Rightarrow x+5=\frac{-1}{3}\Rightarrow x=\frac{-16}{3}\) 

Ta lại có:\(Q=9x^2-42x+49=\left(3x-7\right)^2\)

                     \(=\left(3.\frac{-16}{3}-7\right)^2=529\)

Vậy......

24 tháng 7 2019

Ta có: P = -3

=> \(\frac{1}{x+5}=-3\)

=> \(-3\left(x+5\right)=1\)

=> -3x - 15 = 1

=> -3x = 1 + 15

=> -3x = 16

=> x = 16 : (-3) = -16/3

Với x = -16/3 thay vào Q, ta được:

Q = 9.(-16/3)2 - 42.(-16/3) + 49

Q = 9. 256/9 + 224 + 49

Q = 256  + 224 + 49

Q = 529

Vậy ...