Tính: 2x .(3x2 + 4x + 1) và (2x + 1)(x -2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Thu gọn và sắp xếp đa thức theo lũy thừa giảm dần của biến.
P(\(x\)) = 7\(x^3\) + 4\(x^4\) - 2\(x^2\) + 3\(x^2\) - 3\(x^3\) - \(x^4\) + 5 - 4\(x^3\)
P(\(x\)) = (7\(x^3\) - 3\(x^3\) - 4\(x^3\))+ (4\(x^4\) - \(x^4\)) - (2\(x^2\) - 3\(x^2\)) + 5
P(\(x\)) = 0 + 3\(x^4\) - (-\(x^2\)) +5
P(\(x\)) = 3\(x^4\) + \(x^2\) + 5
b; Hệ số cao nhất là 3; bậc của đa thức là 4; hệ số tự do của đa thức trên là 5
a: Xét ΔBAH vuông tại A và ΔBMH vuông tại M có
BH chung
\(\widehat{ABH}=\widehat{MBH}\)
Do đó: ΔBAH=ΔBMH
b: ΔBAH=ΔBMH
=>BA=BM và HA=HM
Ta có: BA=BM
=>B nằm trên đường trung trực của AM(1)
ta có: HA=HM
=>H nằm trên đường trung trực của AM(2)
Từ (1),(2) suy ra BH là đường trung trực của AM
c: Xét ΔBMN vuông tại M và ΔBAC vuông tại A có
BM=BA
\(\widehat{MBN}\) chung
Do đó: ΔBMN=ΔBAC
=>BN=BC
Xét ΔBNC có \(\dfrac{BA}{BN}=\dfrac{BM}{BC}\)
nên AM//NC
d: Xét ΔBNC có
NM,CA là các đường cao
NM cắt CA tại H
Do đó: H là trực tâm của ΔBNC
=>BH\(\perp\)CN
a: Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=>\(\widehat{A}+84^0+48^0=180^0\)
=>\(\widehat{A}+132^0=180^0\)
=>\(\widehat{A}=48^0\)
b: Xét ΔCAB có \(\widehat{BAC}=\widehat{BCA}\left(=48^0\right)\)
nên ΔBAC cân tại B
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
b: ΔBAD=ΔBHD
=>BA=BH và DA=DH
Xét ΔBHE vuông tại H và ΔBAC vuông tại A có
BH=BA
\(\widehat{HBE}\) chung
Do đó: ΔBHE=ΔBAC
=>BE=BC
=>ΔBEC cân tại B
c: Ta có: ΔBEC cân tại B
mà BD là đường phân giác
nên BD là đường trung trực của EC
=>DE=DC
Xét ΔDEC có DE+DC>CE
=>\(EC< 2DE\)
=>\(\dfrac{EC}{DE}< 2\)
a, vì bộ bài có 52 lá,lá át cơ chỉ có một
=>xác xuất của biến cố bác tuân rút ra lá at cơ là 1/52 hoặc 5,2%
(có thiếu hay sai chỗ nào trong bài của mik ko các bạn?)
\(2x\left(3x^2+4x+1\right)\)
\(=2x.3x^2+2x.4x+2x.1\)
\(=6x^3+8x^2+2x\)
------------------
\(\left(2x+1\right)\left(x-2\right)\)
\(=2x\left(x-2\right)+1.\left(x-2\right)\)
\(=2x.x-2x.2+x-2\)
\(=2x^2-4x+x-2\)
\(=2x^2+\left(-4x+x\right)-2\)
\(=2x^2-3x-2\)