Tính Nhanh
\(\dfrac{5^2}{1.6}\)+ \(\dfrac{5^2}{6.11}\)+...+\(\dfrac{5^2}{26.31}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đổi 20 phút=1/3 giờ
quãng đường từ nhà đến trừng là:
1,2*1/3=0,4(km)
thời gian huy đi từ nhà đến trường vào sáng nay là:
10+20=30 phút
Vận tốc sáng nay của Huy là:
0,4:30=1/75(km/s)
Tổng của các số từ 1 đến 2024 là:
\(\dfrac{2024\left(2024+1\right)}{2}=1012\cdot2025⋮2\)
=>Tổng là số chẵn
Giải:
Cứ 1 đường thẳng tạo với 15 - 1 đường thẳng còn lại số góc nhỏ hơn góc bẹt là: 15 - 1 góc
Với 15 đường thẳng sẽ tạo được số góc nhỏ hơn góc bẹt là:
(15 - 1) x 15 = 210 (góc)
Đáp số: 210 góc
bài 9:
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//CD)
Do đó: ΔAHB~ΔBCD
b: ta có: ΔABD vuông tại A
=>\(AB^2+AD^2=BD^2\)
=>\(BD^2=9^2+12^2=225=15^2\)
=>BD=15(cm)
Ta có: ΔAHB~ΔBCD
=>\(\dfrac{AH}{BC}=\dfrac{AB}{BD}\)
=>\(\dfrac{AH}{9}=\dfrac{12}{15}\)
=>\(AH=9\cdot\dfrac{12}{15}=9\cdot\dfrac{4}{5}=7,2\left(cm\right)\)
Bài 10:
a: Xét ΔOEA vuông tại E và ΔODB vuông tại D có
\(\widehat{EOA}=\widehat{DOB}\)(hai góc đối đỉnh)
Do đó: ΔOEA~ΔODB
=>\(\dfrac{OE}{OD}=\dfrac{OA}{OB}\)
=>\(OE\cdot OB=OA\cdot OD\)
b: Xét ΔCEB vuông tại E và ΔCDA vuông tại D có
\(\widehat{ECB}\) chung
Do đó: ΔCEB~ΔCDA
=>\(\dfrac{CE}{CD}=\dfrac{CB}{CA}\)
=>\(\dfrac{CE}{CB}=\dfrac{CD}{CA}\)
Xét ΔCED và ΔCBA có
\(\dfrac{CE}{CB}=\dfrac{CD}{CA}\)
\(\widehat{ECD}\) chung
Do đó: ΔCED~ΔCBA
Chữ số hàng chục có thể là: 0; 1; 2; ...; 9
Có 10 chữ số làm chữ số hàng chục
Với mỗi chữ số hàng chục ta lại có 4 chữ số chẵn là 2; 4; 6; 8 để làm chữ số hàng đơn vị và hàng trăm
Vậy có 4 × 10 = 40 số thỏa mãn yêu cầu đề bài
Bài 7:
a: Xét ΔOBA và ΔOCD có
\(\widehat{OBA}=\widehat{OCD}\)
\(\widehat{BOA}=\widehat{COD}\)(hai góc đối đỉnh)
Do đó: ΔOBA~ΔOCD
b: Ta có: ΔOBA~ΔOCD
=>\(\dfrac{OB}{OC}=\dfrac{OA}{OD}\)
=>\(\dfrac{OB}{OA}=\dfrac{OC}{OD}\)
Xét ΔOBC và ΔOAD có
\(\dfrac{OB}{OA}=\dfrac{OC}{OD}\)
\(\widehat{BOC}=\widehat{AOD}\)(hai góc đối đỉnh)
Do đó: ΔOBC~ΔOAD
c: Ta có: ΔOBC~ΔOAD
=>\(\widehat{OCB}=\widehat{ODA}\)
Xét ΔEBD và ΔEAC có
\(\widehat{EDB}=\widehat{ECA}\)
\(\widehat{E}\) chung
Do đó: ΔEBD~ΔEAC
=>\(\dfrac{EB}{EA}=\dfrac{ED}{EC}\)
=>\(EB\cdot EC=EA\cdot ED\)
Bài 8:
Xét ΔHEA vuông tại E và ΔHDB vuông tại D có
\(\widehat{EHA}=\widehat{DHB}\)(hai góc đối đỉnh)
Do đó: ΔHEA~ΔHDB
=>\(\dfrac{HE}{HD}=\dfrac{HA}{HB}\)
=>\(HE\cdot HB=HD\cdot HA\)(1)
Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó: ΔHFB~ΔHEC
=>\(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)
=>\(HF\cdot HC=HB\cdot HE\left(2\right)\)
Từ (1) và (2) suy ra \(HA\cdot HD=HF\cdot HC=HB\cdot HE\)
Khi giải toán hình Thịnh cần có thêm hình vẽ nhé.
Bài 5:
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{ACB}\) chung
Do đó: ΔABC~ΔHAC
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{HAC}\right)\)
Do đó: ΔHAB~ΔHCA
=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)
=>\(HA^2=HB\cdot HC\)
c: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=10^2-6^2=64\)
=>AC=8(cm)
Bài 6:
a: Xét ΔABO và ΔDCO có
\(\widehat{AOB}=\widehat{DOC}\)(hai góc đối đỉnh)
\(\widehat{OAB}=\widehat{ODC}\)
Do đó; ΔABO~ΔDCO
b: Ta có: ΔOAB~ΔODC
=>\(\dfrac{OA}{OD}=\dfrac{OB}{OC}\)
=>\(\dfrac{OA}{OB}=\dfrac{OD}{OC}\)
Xét ΔOAD và ΔOBC có
\(\dfrac{OA}{OB}=\dfrac{OD}{OC}\)
\(\widehat{AOD}=\widehat{BOC}\)(hai góc đối đỉnh)
Do đó: ΔOAD~ΔOBC
Gọi d=ƯCLN(2n+1;3n+2)
=>\(\left\{{}\begin{matrix}2n+1⋮d\\3n+2⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}6n+3⋮d\\6n+4⋮d\end{matrix}\right.\)
=>\(6n+4-6n-3⋮d\)
=>\(1⋮d\)
=>d=1
=>ƯCLN(2n+1;3n+2)=1
=>\(\dfrac{2n+1}{3n+2}\) là phân số tối giản
\(\dfrac{5^2}{1\cdot6}+\dfrac{5^2}{6\cdot11}+...+\dfrac{5^2}{26\cdot31}\)
\(=5\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{26\cdot31}\right)\)
\(=5\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{26}-\dfrac{1}{31}\right)\)
\(=5\left(1-\dfrac{1}{31}\right)=5\cdot\dfrac{30}{31}=\dfrac{150}{31}\)
Tớ không biết