K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2023

\(Từ\) \(giả\) \(thiết\) : \(4a^2+b^2=\text{5}ab\)

\(\Leftrightarrow4a^2-4ab-ab+b^2\)

\(\Leftrightarrow\left(4a-b\right)\left(a-b\right)=0\)

\(TH1:\) \(4a-b=0\) \((\) \(mẫu\) \(thuẫn\) \(với\) \(2a>b\) \()\)

\(TH2:\) \(a-b=0\)

\(\Rightarrow a=b\)

\(\Rightarrow A=\dfrac{a^2}{4a^2-a^2}\)

\(\Rightarrow A=\dfrac{1}{3}\)

28 tháng 1 2023

`A=[4x^4+1]/[2x^2-2x+1]`

`A=[4x^4+4x^2+1-4x^2]/[2x^2-2x+1]`

`A=[(2x^2+1)^2-4x^2]/[2x^2-2x+1]`

`A=[(2x^2-2x+1)(2x^2+2x+1)]/[2x^2-2x+1]`

`A=2x^2+2x+1`

27 tháng 1 2023

\(=8x^3-4x^2y-4x^2+2xy-2xy^2+y^3\)

27 tháng 1 2023

a) Áp dụng định lý Thales trong tam giác ABC, ta có:

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\) . Kết hợp với giả thiết ta được \(\dfrac{2}{5}=\dfrac{AE}{7,5}\) \(\Rightarrow AE=3\)

b) Ta thấy \(\dfrac{AE}{AC}=\dfrac{3}{7,5}=\dfrac{2}{5}\) nhưng \(\dfrac{BF}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\ne\dfrac{AE}{AC}\) nên theo định lý Thales đảo, ta không thể có EF//AB.

AH
Akai Haruma
Giáo viên
28 tháng 1 2023

Lời giải:

Đặt $a+b+c=x; ab+bc+ac=y$. Khi đó:
\(A=\frac{(x^2-2y)x^2+y^2}{x^2-y}=\frac{(x^2-y)x^2+y^2-x^2y}{x^2-y}\)

\(=\frac{(x^2-y)x^2-y(x^2-y)}{x^2-y}=\frac{(x^2-y)(x^2-y)}{x^2-y}=x^2-y\)

$=(a+b+c)^2-(ab+bc+ac)=a^2+b^2+c^2+ab+bc+ac$

23 tháng 10 2024

240